Full Length Article

Assessment of nanofluids for laminar convective heat transfer: A numerical study

Nilesh Purohit a,⁎, Varun Anand Purohit b, Kamlesh Purohit c

a BITS Pilani, Mechanical Engineering Department, Pilani, Rajasthan 333031, India
b AVL List GmbH Hans-List-Platz 1, Graz A-8020, Austria
c M.B.M, Mechanical Engineering Department, Jodhpur, Rajasthan 342001, India

A R T I C L E I N F O

Article history:
Received 8 July 2015
Received in revised form 13 August 2015
Accepted 14 August 2015
Available online

Keywords:
Heat transfer
Laminar flow
Nanofluid
Numerical study
Comparison

A B S T R A C T

In this article, a numerical study of laminar forced convective heat transfer in a circular tube is presented, incorporating entropy generation and wall shear stress analysis. Three different nanofluids, Al2O3–water, ZrO2–water and TiO2–water, are considered under constant heat flux boundary condition using single phase approach. Performance of nanofluids is compared with the base fluid by keeping the Reynolds number, mass flow rate and discharge criteria constant for various volume fractions of nanoparticles. A non linear dependence of base fluid thermo-physical properties with temperature is considered in this study. For same Reynolds number comparison criteria, the heat transfer coefficient for nanofluids is found to be significantly higher as compared to the base fluid. However, for same mass flow rate and same discharge comparison criteria, an increment in the heat transfer coefficient is found to be insignificant. The performance factor is found to be poor for the nanofluids and also, it decreases with an increase in particle loading. However, it is nearly similar for all kinds of comparisons. The entropy generation decreases for the nanofluids under same Reynolds number comparison, but the decrement is found to be negligible for the other two comparison bases. The wall shear stress increases with an increase in particle loading for all three comparisons.

1. Introduction

Colloidal suspensions made by dispersing nanoparticles (NPs) in a base fluid with various concentrations are termed as nanofluids (NFs). The concept of NFs was first materialized by Choi [1] after performing experimental investigations on various nanoparticles in Argonne National Laboratory (ANL). NPs basically are solids, which influence base fluid thermo-physical properties such as thermal conductivity, viscosity, specific heat and density [2]. The thermal conductivity of conventional base fluids increases by adding NPs, which increases heat transfer coefficient. But at the same time, viscosity also increases, which in turn increases the pumping power. The trade-off between these two contradictory effects on thermo-physical properties is vital when considering NPs as heat transfer fluids. Studies on convective heat transfer of NFs, mostly in circular tubes, could be found from the literature [3–5]. Frequently, comparing NF performance with base fluids for laminar conditions has been reported at equal Reynolds number. Li and Xuan [6] experimentally investigated Cu/water NF in a circular tube of length 800 mm and diameter 10 mm, under same Reynolds number (Re) comparison criteria and constant heat flux boundary condition. The effects of the volume fractions (0.5–2%) and the Re (800–2100) on the heat transfer and flow characteristics were examined. They declared maximum 60% enhancement in heat transfer coefficient (HTC) for 2.0% particle volume fraction. Wen and Ding [7] performed a series of experiments to investigate the effect of Re (500–2100) and particle volume fraction (0.6 and 1.6%) on the heat transfer characteristics of the y-alumina/water NF in a circular tube of length 950 mm and diameter 4.5 mm. They reported 47% enhancement in local HTC at local distance (x/D) = 63, for 1.6% particle loading (volume fraction) for Re 1600. They also utilized same Re comparison criteria under constant heat flux boundary condition. Maiga et al. [8] investigated y-alumina/water and y-alumina/ethylene glycol under constant heat flux boundary condition for Re less than 1000. They reported 67% enhancement in HTC for 7.5% particle loading (volume fraction) for Re 1000. A circular tube of length 1 m and diameter 10 mm was selected for comparing the NF performance with two different base fluids at the same Re under a wide range of

http://dx.doi.org/10.1016/j.jestch.2015.08.010
2215-0986/Copyright © 2015, The Authors. Production and hosting by Elsevier B.V. on behalf of Karabuk University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
particle volume fractions (0–10%). Zeinali Heris et al. [9] investigated laminar convective heat transfer of metal oxide NFs (CuO/water and alumina/water) under same Re comparison criteria for a wide range of particle loadings (0.2–3% by volume). They considered a circular tube of length 1 m and diameter 6 mm for their analysis. Also, they reported that the HTC of NFs increases with a decrease in particle size and increase in particle loading. Chen et al. [10] investigated local heat transfer characteristics of titanium oxide nanotube/water NF under laminar conditions (Re = 1100–2300) for three different particle loadings (0.5, 1 and 2.5% by weight). They utilized a circular tube of length 2 m and diameter 3.9 mm with constant heat flux boundary condition under the same Re comparison criteria for their analysis. Also, they reported enhancement in local HTC for NFs at 0.5, 1 and 2.5% particle loadings as 11.8%, 23.5% and 24.9% respectively. Similar studies [11–13] were reported showing enhancement in HTC of various NFs under laminar conditions keeping the same Re number comparison criteria.

However, a few studies were also reported with other bases of comparison. Owing to higher viscosity of NFs, they must be operated in higher mass/volume flow rates to have a Reynolds number equal to that of their corresponding base fluid. Comparing heat transfer coefficients of NFs and base fluids at equal mass flow rates, equal discharges, equal pumping powers and equal pressure drops could be a reasonable method. Haghighi et al. [14] investigated the heat transfer characteristics of three different NFs (alumina/water, zirconium oxide/water and titanium oxide/water) under laminar condition (Re = 200–2200) keeping the same Re, the same mass flow rate and the same discharge comparison criterion in a micro tube. They reported a maximum 30% enhancement in HTC when compared keeping the same Re but negligible enhancement for other two comparison bases. They also reported in another investigation for circular tube [15] that at an equal Re comparison HTC increased by 8–23% whereas at an equal pumping power comparison it decreased. The experimental studies for forced convective heat transfer of NFs for laminar flow conditions are summarized in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Author</th>
<th>Basis of comparison</th>
<th>Nanofluid</th>
<th>Particle loading</th>
<th>Reynolds no. (Re)</th>
<th>Geometry</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li & Xuan [6]</td>
<td>Same Re</td>
<td>Cu/water</td>
<td>0.5–2 vol%</td>
<td>800–2100</td>
<td>D = 10 mm L = 800 mm</td>
<td>Heat transfer coefficient (HTC) increases up to max. 60% for 2.0 vol% particle loading.</td>
</tr>
<tr>
<td>Wen & Ding [7]</td>
<td>Same Re</td>
<td>γ-Alumina/water</td>
<td>0.6, 1 & 1.6 vol%</td>
<td>500–2100</td>
<td>D = 4.5 mm L = 950 mm</td>
<td>47% enhancement in local HTC at x/D = 63 for 1.6 vol% particle loading, Re = 1600</td>
</tr>
<tr>
<td>Maiga et al. [8]</td>
<td>Same Re</td>
<td>γ-Alumina/water, γ-Alumina/Ethylen Glycol</td>
<td>0–10 vol%</td>
<td>250–1000</td>
<td>D = 10 mm L = 1 m</td>
<td>63% enhancement in HTC for 7.5 vol% particle loading, Re = 1000</td>
</tr>
<tr>
<td>Zeinali Heris et al.</td>
<td>Same Re</td>
<td>CuO/water, Alumina/water</td>
<td>0.2–3 vol%</td>
<td>650–2050</td>
<td>D = 6 mm L = 1 m</td>
<td>HTC increases with decrease in particle size and increase in particle loading</td>
</tr>
<tr>
<td>Chen et al. [10]</td>
<td>Same Re</td>
<td>Titanate nanotube/water</td>
<td>0.5, 10 & 2.5 wt%</td>
<td>1100–2300</td>
<td>D = 3.9 mm L = 2 m</td>
<td>Enhancements in local HTC at 0.5, 1.0 and 2.5 wt% at x/D = 50.4 respectively 11.8%, 23.5% and 24.9%.</td>
</tr>
<tr>
<td>Anoop et al. [11]</td>
<td>Same Re</td>
<td>Alumina/water</td>
<td>1, 2, 4 & 6 wt%</td>
<td>500–2000</td>
<td>D = 4.75 mm L = 1.2 mm</td>
<td>For x/D = 147, for 45 nm particle (4 wt%) with Re = 1550, the enhancement in HTC was around 25% whereas for 150 nm particle it was found to be around 11%.</td>
</tr>
<tr>
<td>Suresh et al. [12]</td>
<td>Same Re</td>
<td>Alumina–Cu/water Hybrid</td>
<td>0.1 vol%</td>
<td>500–2000</td>
<td>D = 10 mm L = 1 m</td>
<td>Max. enhancement of 13.56% in Nusselt number at a Reynolds number of 1730</td>
</tr>
<tr>
<td>Davarnejad et al.</td>
<td>Same Re</td>
<td>Hybrid Alumina/water</td>
<td>0.5–2.5 vol%</td>
<td>420–990</td>
<td>D = 6 mm L = 1 m</td>
<td>HTC increases by increasing velocity and decreasing particle diameter</td>
</tr>
<tr>
<td>Haghighi et al. [14]</td>
<td>Same Re</td>
<td>Alumina, Zirconia & Titanate/water</td>
<td>9 wt%</td>
<td>200–2200</td>
<td>D = 0.30 mm L = 30 cm</td>
<td>30% enhancement in HTC when compared keeping the same Re, but negligible enhancement for other two comparison bases.</td>
</tr>
<tr>
<td>Haghighi et al. [15]</td>
<td>Same pumping power</td>
<td>Alumina, Zirconia & Titanate/water</td>
<td>9 wt%</td>
<td>10–2300</td>
<td>D = 3.7 mm L = 1.5 mm</td>
<td>At equal Re comparison, HTC increased by 8–23%, whereas at equal pumping power, HTC decreased</td>
</tr>
</tbody>
</table>

m^* = mass flow rate (kg s$^{-1}$), Q^* = Discharge (m3 s$^{-1}$), L, D = Length and diameter of test section.

In the same year, Goodarzi et al. [17] also investigated Cu/Water NF mixed convection in a rectangular shallow cavity using a two-phase mixture model. They reported that for a specific Grashof and Richardson number, the HTC increases with increase in particle loading. Safaei et al. [18] in the same year investigated multi walled carbon nanotube/Water NF in a forward facing contracting channel using single phase simulation technique. They also reported increment in HTC for NF over base fluid under the same Re criteria. No devoted numerical study, exploring comparison criteria other than same Re comparison, is found in literature. This gives the motivation to assess NFs for laminar convective heat transfer using non conventional comparison approaches.

In this study, Al$_2$O$_3$/water, ZrO$_2$/water and TiO$_2$/water NFs are numerically investigated for equal Re, equal mass flow rate and equal discharge comparison criteria under constant wall heat flux boundary condition. A complete assessment of NFs for laminar flow convective heat transfer is carried out which includes performance factor, entropy generation and wall shear stress calculations too. Particle loading is varied from 0.01 m with laminar flow conditions (Re = 1730) for three different particle loadings (0.5, 1 and 2.5% by weight). They utilized a circular tube of length 2 m and diameter 3.9 mm with constant heat flux boundary condition under the same Re comparison criteria for their analysis. Also, they reported enhancement in local HTC for NFs at 0.5, 1 and 2.5% particle loadings as 11.8%, 23.5% and 24.9% respectively. Similar studies [11–13] were reported showing enhancement in HTC of various NFs under laminar conditions keeping the same Re number comparison criteria.

However, a few studies were also reported with other bases of comparison. Owing to higher viscosity of NFs, they must be operated in higher mass/volume flow rates to have a Reynolds number equal to that of their corresponding base fluid. Comparing heat transfer coefficients of NFs and base fluids at equal mass flow rates, equal discharges, equal pumping powers and equal pressure drops could be a reasonable method.

2. Mathematical modeling

The mathematical modeling of the NFs is done using single phase approach. In literature many studies are reported using single phase modeling to simulate NFs [19,20]. However, multi-phase techniques are more accurate and complex for simulating NFs than single
phase approach. Several recent studies are reported utilizing multi-phase modeling approaches [21–24]. For our range of investigation i.e. laminar flow, which is well defined flows, single phase modeling may be justified. Buongiorno [25] investigated seven slip mechanisms which can produce relative velocity between NP and base fluid. He reported that among investigated slip mechanisms Brownian diffusion and thermophoresis were found to be the most relevant mechanisms. Further, Ahmed et al. [26] concluded that for flows with Re higher than 100, both the Brownian force and thermophoresis may be safely neglected. This implies that homogeneous behavior of the NFs is justified for our range of parameters (Re = 1150–1900). The homogenous behavior of the NF can be resolved safely using single phase modeling. Further, recently Davarnejad and Jamshidzadeh [27] investigated heat transfer performance of MgO/Water NF using single and multi-phase modeling approach and compared the simulation findings with the experimental results. They concluded that average deviation of simulation findings from experimental results for single phase approach was about 11% and that for multi-phase approach was around 2%.

2.1. Geometrical configuration

In this article, a circular tube is considered for investigating NFs as shown in Fig. 1. The ratio of L/D is so chosen to maintain a hydrodynamically developed flow at the outlet. Also, the computational domain is considered to be symmetrical with respect to the tube’s main axis, so as to save computational time without compromising accuracy.

2.2. Governing equations and boundary conditions

The following governing equations are used for mathematical formulation of the single phase model [28].

Conservation of mass

\[
\nabla (\rho \vec{V}) = 0
\]

(1)

Conservation of momentum

\[
\nabla (\rho \vec{V}) = -\nabla P + \nabla \cdot \left(\vec{V} \cdot \nabla \vec{V} \right)
\]

(2)

Conservation of energy

\[
\nabla (\rho C_p T) = \nabla (k \nabla T)
\]

(3)

Compression work and viscous dissipation are assumed to be negligible in the energy equation. Also, source/sink term which represents integrated effects of momentum and energy exchange with base fluid is neglected. Constant velocity inlet and pressure outlet boundary conditions are applied. For heat transfer analysis, constant wall heat flux (18,000 W/m²) boundary condition is considered.

![Fig. 1. Schematic of geometrical configuration under investigation.](image)

2.3. Thermo-physical properties

In this article, the thermo-physical property of base fluid is considered temperature dependent. Also, this dependence of thermo-physical properties on temperature is non linear as shown by equations 4–7 [29,43].

\[
\rho_{nf} = 999.79 + (0.068 \times t) - (0.0107 \times t^2) + (0.00082 \times t^{2.5}) - (2.303 \times 10^{-5} \times t^4)
\]

\(t \rightarrow \text{Temperature (K)} \) (4)

\[
k_{nf} = 0.56112 + (0.00193 \times t) - (2.601 \times 10^{-6} \times t^2)
\]

\(t \rightarrow \text{Temperature (K)} \) (5)

\[
\mu_{nf} = 0.00169 - (4.25 \times 10^{-5} \times t) + (4.92 \times 10^{-7} \times t^2)
\]

\(t \rightarrow \text{Temperature (K)} \) (6)

\[
C_{nf} = 4217.4 - (5.61 \times t) + (1.299 \times t^{1.52}) - (0.11 \times t^2) + (4149.6 \times t^{2.5})
\]

\(t \rightarrow \text{Temperature (K)} \) (7)

Further, equations 8–15 are used to compute thermo-physical properties of NFs, which are assumed to be temperature independent within 300–350 K temperature range [14]. The absolute values for the thermo-physical properties for the NPs are listed in Table 2 [30].

Table 2: Thermo-physical properties of nanoparticles.

<table>
<thead>
<tr>
<th>Nanoparticle</th>
<th>Density (kg m⁻³)</th>
<th>Specific heat (J/kgK)</th>
<th>Thermal conductivity (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumina</td>
<td>3970</td>
<td>880</td>
<td>36</td>
</tr>
<tr>
<td>Zirconium oxide</td>
<td>5600</td>
<td>418</td>
<td>2.8</td>
</tr>
<tr>
<td>Titanium oxide</td>
<td>4157</td>
<td>710</td>
<td>8.4</td>
</tr>
</tbody>
</table>

2.3.1. Density

In this section, density of NFs is computed using Newton’s mixture equation [31], which is as follows:

\[
\rho_{nf} = \rho_{bf} (1 - \phi) + \rho_{pc} \phi
\]

(8)

2.3.2. Specific Heat

The effective specific heat for all NFs is calculated using the following equation [31], which assumes thermal equilibrium between particle and the surrounding fluid:

\[
c_{nf} = \frac{(1 - \phi)(\rho_{pc})_d + \phi(\rho_{pc})_e}{(\rho_{nf})}
\]

(9)

2.3.3. Thermal conductivity and viscosity

The thermal conductivities of the alumina and titanium oxide NFs are calculated using Maxwell model [32] i.e. equations (10) and (14). A benchmark study by Buongiorno et al. [33] justifies the use of Maxwell model for calculating the thermal conductivity of water based NFs. The equation (11) is used for calculating viscosity of alumina NF [8]. The viscosity of titanium oxide NF is calculated using equation (15), which is curve fitted and correlated by Buongiorno [34] using the results of Pak and Cho [31]. The thermal conductivity and viscosity of zirconium oxide NF are calculated using equations (12) and (13) respectively. These equations are curve fitted and correlated by Rea et al. [35], using the data of Williams et al. [36].

For Al₂O₃/Water
Table 3
Mesh independency test.

<table>
<thead>
<tr>
<th>Number of grids</th>
<th>Average heat transfer coefficient (Wm(^{-2}))</th>
<th>Pressure drop (Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15,000</td>
<td>632.2444</td>
<td>45.32</td>
</tr>
<tr>
<td>21,000</td>
<td>637.3937</td>
<td>44.17</td>
</tr>
<tr>
<td>36,000</td>
<td>647.1095</td>
<td>42.71</td>
</tr>
<tr>
<td>48,000</td>
<td>662.5187</td>
<td>40.46</td>
</tr>
<tr>
<td>60,000</td>
<td>683.2944</td>
<td>38.36</td>
</tr>
<tr>
<td>75,000</td>
<td>701.3921</td>
<td>37.12</td>
</tr>
<tr>
<td>100,000</td>
<td>729.7790</td>
<td>36.63</td>
</tr>
<tr>
<td>140,000</td>
<td>730.9943</td>
<td>36.31</td>
</tr>
<tr>
<td>220,000</td>
<td>732.0340</td>
<td>36.01</td>
</tr>
<tr>
<td>300,000</td>
<td>731.0980</td>
<td>35.81</td>
</tr>
</tbody>
</table>

2.4. Numerical method and code validation

The computational fluid dynamics code FLUENT is employed to solve the model. The governing equations (1)-(3) are solved by control volume approach. The residuals resulting from these equations are used as indicators for convergence criterion. To ensure the accuracy and the consistency of computational results, various uniform grids are tested. The result of mesh independency test shows that 100,000 numbers of grids are satisfactory to resolve local HTC and pressure drop along the pipe, as shown in Table 3. Figs. 2 and 3 also show the mesh independency test results.

In this article the heat transfer analysis is supported by three other parameters: performance factor, entropy generation and wall shear stress. Also, three different comparison approaches are used to evaluate the NFs for heat transfer fluid in laminar conditions. The local HTC is calculated using equation (16) and the average HTC is obtained by equation (17).

\[
h_{avg} = \frac{1}{L} \int_{0}^{L} h(x)dx
\]

\[
h(x) = \frac{q}{(T(x)_{w} - T(x)_{b})}
\]
or to measure the performance of NFs, thermal performance is used, which can be measured by performance factor as a function of heat transfer enhancement and pressure drop enhancement ratios. The performance factor for NFs is given as follows [37]:

\[
\eta = \frac{(h_r)(p_r)}{(18)}
\]

where,

\[\eta = \text{Performance Factor.}\]
\[h_r = \text{Heat transfer enhancement ratio.}\]
\[p_r = \text{Pressure drop enhancement ratio.}\]

Thermodynamic second law analysis provides an additional dimension to assess NFs. Several recent studies investigating entropy generation of NFs can be found in literature [38–40]. Entropy can be defined as a measure of molecular disorder or randomness. Entropy generation as defined by the second law of thermodynamics finds its significance in measuring the complete and true performance of any thermodynamic system. Entropy generation is also a measure of entropy created by irreversibilities such as friction, heat transfer through a finite temperature difference, mixing, chemical reactions etc. In our study, fictional irreversibility and thermal irreversibility (due to heat transfer) are considered. Entropy generation is directly related to the thermodynamic efficiency and it is calculated using Bejan's equation for laminar flow [41,42] as follows:

\[
S_t = S_h + S_f
\]

\[
S_h = \frac{(2. m^3. f)}{(D. A. \rho^2. T_i)}
\]

\[
S_f = \frac{((Dq^2)/4. T_f^3. m. c. S_t)}{(21)}
\]

where,

\[
S_t = \text{Total Entropy Generation (W k}^{-1})
\]
\[
S_h = \text{Entropy Generation Due to Heat Transfer (W k}^{-1})
\]
\[
S_f = \text{Entropy Generation Due to Friction (W k}^{-1})
\]

Bejan Number is defined as the ratio of entropy generation due to heat transfer to the total entropy generation. It is calculated as follows:

\[
\text{Be (Bejan Number)} = \frac{S_h}{S_t}
\]

The average wall shear stress is calculated by considering the dynamic equilibrium between the pressure drop across the cross section and the shear stress at the wall for the length of the investigated duct. For fully developed laminar flows, the fluid movement is actually not accelerating. Thus, from Newton's second law, the forces acting on the fluid must be in dynamic equilibrium. Hence, by equating pressure drop across the cross section to the shear stress across the inner surface of the tube, wall shear stress can be defined as follows:

\[
\tau = \frac{\Delta p \times D}{4L}
\]

\[
\Delta p = \text{Pressure Drop (Pa)}
\]

To validate the numerical results, theoretical equations are used. The correlation used for the validation of the local HTC given by Bejan [42], which is a closed form expression that covers both the entrance and the fully developed regions, is as follows:
\[\frac{N_u}{4.364\left(1+\frac{Gz}{29.6}\right)^{-\frac{1}{6}}} = 1+\left(\frac{Gr}{19.04} \right)^{\frac{1}{2}} \left(1+\frac{Pr}{0.02}\right)^{-\frac{1}{2}} \left(1+\frac{Gz}{29.6}\right)^{-\frac{1}{2}} \]

(25)

where,

\[N_u = \text{Local Nusselt Number} \]

\[Gz = \pi \times \frac{Re Pr}{x/D} \]

\[Gz = \text{Graetz Number} \]

\[Re = \text{Reynolds Number based on the diameter of the pipe.} \]

\[Pr = \text{Prandtl Number} \]

\[x = \text{Axial distance (m)} \]

\[D = \text{Diameter of the pipe (m)} \]

The pressure drop resulting from numerical solution is validated by calculating the friction factor (equation 26) and comparing the same with the standard Blasius solution [42] (equation 27) for the laminar flows. Figure 4 and Fig. 5 show the validity of results with errors less than 10%.

\[f = 2\Delta pD/(\mu x^2) \]

(26)

\[f = 64/Re \]

(27)

3. Results and discussions

3.1. Convective heat transfer of NFs

Generally, adding NPs to the base fluid results in increment of thermal conductivity which in turn increases the heat transfer capability. Further, it increases with an increase in Re. The results for the convective heat transfer of NFs are shown in Fig. 6 and Fig. 7. For comparing all the three comparison bases a fixed particle loading of 1.5% by volume is adopted. The main findings drawn from Fig. 6 and Fig. 7 are as follows:

- Under equal Re comparison criteria, HTC for NFs increases with increase in particle loading (0.5–2% by volume) and showed 5–18% enhancement for all investigated NFs as shown in Fig. 6.
- The trend obtained may be due to the increased mass/volume flow rates of the corresponding NFs owing to their high density and viscosity. This conventional comparison criterion is possibly misleading and not sufficient enough from a practical point of view.
- Further, the enhancement in HTC is found to be negligible, maximum up to 3%, for equal mass flow rate and equal discharge comparison bases, as shown in Fig. 7.
- For all investigated comparison criteria, alumina and zirconium NF showed superior and similar behavior while titanium oxide NF showed the minimum enhancement.

3.2. Performance factor of NFs

The performance factor of NFs depends on heat transfer and pressure drop enhancement ratios. Adding NPs to the base fluid increases...
Fig. 5. Numerical values of friction factor for water compared with theoretical equation.

Fig. 6. Comparison of HTC for NFs with water at equal Reynolds Number for various volume fraction; (a) Alumina NF, (b) Titanium oxide NF; (c) Zirconium oxide NF.
the HTC due to an increase in thermal conductivity. However, NPs are heavier than base fluid; as a consequence pressure drop also increases. So, it measures the combined effect of adding NPs in the base fluid. Performance factor results for NPs are shown in Fig. 8 and Fig. 9. Generally, a performance factor above 1 is considered reasonable.

The main findings drawn from Fig. 8 and Fig. 9 are as follows:

- The performance factor was found to be poor for all NPs, regardless of the comparison criteria, as shown in Fig. 8 and Fig. 9. This may be attributed to the higher proportion increment of viscosity than HTC for NPs.
- Among all investigated cases, the maximum value for performance factor is found to be 0.9949 for titanium NF. This can be attributed to the minimum pressure drop of the titanium oxide NF due to lower viscosity rise as compared to other two NPs.
- The performance factor is found to be highest for titanium oxide NF, whereas for alumina and zirconium NFs it is found to be lower and almost similar.

3.3. Entropy generation of NPs

Entropy generation of NPs is a vital parameter that reflects the thermodynamic efficiency. The entropy generated depends on two factors namely thermal gradient and velocity gradient. The thermal gradients are responsible for the entropy generated due to the heat transfer while a velocity gradient induces entropy due to viscous effect or fluid friction. In our range of parameters (laminar flow, Re = 1150–1900) the thermal gradient factor dominates the velocity gradient indicating dominance of heat transfer irreversibility. Further, Bejan’s number is found to be nearly one in all investigated cases. Entropy generation results for NPs are shown in Fig. 10 and Fig. 11.

The main findings from Fig. 10 and Fig. 11 are as follows:

- Under equal Re comparison criteria, entropy generation for NPs decreases with increase in particle loading and showed 4.4%–14.04% decrement for all investigated NPs as shown in Fig. 10.
- However, the decrement of entropy generation is found to be negligible for the other two comparison bases, as shown in Fig. 11.
- The entropy generation decrement is found to be nearly the same for alumina and zirconium NPs, whereas for the titanium oxide NF it is found to be lower regardless of the comparison bases.

3.4. Wall shear stress of NPs

Wall shear stress is directly coupled to the pumping power as it is a function of pressure drop. Further, it is a combined function of viscosity, dimensions of the duct and the velocity, forming a non linear functionality. Since geometry is fixed, the only variables left to affect wall shear stress are viscosity and velocity. Wall shear stress results for NPs are shown in Fig. 12 and Fig. 13.

The main findings from Fig. 12 and Fig. 13 are as follows:

- Under equal Re comparison criterion, wall shear stress for NPs increases with increase in particle loading (0.5–2% by volume) and shows maximum of 3% enhancement for all investigated NPs as shown in Fig. 12.
- However, for the other two comparison bases, the increment in stress was negligible as shown in Fig. 13.
- As the particle loading increases, the non linearity in increase of wall shear stress increases due to increased viscosity of the NF at a particular Re.
- The wall shear stress is found to be highest for the zirconium NF and least for the titanium oxide NF for all type of comparison bases.
Fig. 8. Comparison of Performance for NFs with water at equal Reynolds Number for various volume fraction; (a) Alumina NF, (b) Titanium oxide NF, (c) Zirconium oxide NF.

Fig. 9. Comparison of Performance Factor for NFs with water for 1.5% volume fraction. (a) At equal Reynolds Number. (b) At equal mass flow rate. (c) At equal discharge.
Fig. 10. Comparison of Entropy Generation for NFs with water at equal Reynolds Number for various volume fraction; (a) Alumina NF, (b) Titanium oxide NF, (c) Zirconium oxide NF.

Fig. 11. Comparison of Entropy Generation for NFs with water for 1.5% volume fraction. (a) At equal Reynolds Number. (b) At equal mass flow rate. (c) At equal discharge.
Fig. 12. Comparison of Wall Shear Stress for NFs with water at equal Reynolds Number for various volume fraction; (a) Alumina NF, (b) Titanium oxide NF, (c) Zirconium oxide NF.

Fig. 13. Comparison of Wall Shear Stress for NFs with water for 1.5% volume fraction. (a) At equal Reynolds Number. (b) At equal mass flow rate. (c) At equal discharge.
4. Conclusions

In this article, steady state laminar convections of Al2O3/water, ZrO2/water and TiO2/water NFs were numerically investigated in a circular tube. Performance of NFs was compared with water (base fluid) using three different comparison criteria that are equal Reynolds Number, equal mass flow rate and equal discharge for both NF and base fluid. The performance of NFs depends partly on heat transfer coefficient, performance factor, entropy generation and wall shear stress, which was properly investigated here. The major conclusions drawn are as follows:

- Generally, in literature nanofluids are compared with base fluids by keeping the same Reynolds Number. However, this could be misleading. Comparing the nanofluids in such a manner resulted in a 8–30% increment of heat transfer coefficient for all investigated nanofluids. But this increment was found to be negligible for same mass flow rate and same discharge comparison bases.
- The performance factor was found to be poor for all tested nanofluids, regardless of comparison bases. Also, it was found to decrease with increase in particle loading.
- The entropy generation for nanofluids was found to decrease significantly as compared to base fluid for same Reynolds number criteria. However, this decrement was found to be negligible for the other two comparison bases. In all investigated cases, the Bejan Number was found to be nearly one, which indicates the dominance of heat transfer irreversibility.
- The wall shear stress was found to increase with increase in particle loading for all tested cases. However, the increment was found to be negligible for equal mass flow rate and equal discharge comparison bases.

In this article, no advantage was observed for employing any of the tested nanofluids over water, when the comparison is done keeping the mass flow rate and discharge the same. However, nanofluids show great potential as heat transfer fluids when the comparison basis is equal Reynolds number.

Acknowledgements

The authors would like to thank the late Dr. B.K. Maheshwari for his intense guidance and support. The authors also thank Mr. Sharad Purohit, Prof. M.S Dasgupta and Mr. Sanjeev Jakhar, for their valuable suggestions and help in this research.

Nomenclature

\[\begin{align*}
 h & \quad \text{Heat Transfer Coefficient (Wm}^{-2}\text{K}^{-1}) \\
 k & \quad \text{Thermal Conductivity (Wm}^{-1}\text{K}^{-1}) \\
 T & \quad \text{Temperature (K)} \\
 C & \quad \text{Specific Heat (Jkg}^{-1}\text{K}^{-1}) \\
 L & \quad \text{Length of Tube (m)} \\
 A & \quad \text{Area (m}^2\text{)} \\
 D & \quad \text{Diameter of Tube (m)} \\
 S & \quad \text{Entropy Generation (WK}^{-1}) \\
 m & \quad \text{Mass Flow Rate (kg}^{-1}) \\
 f & \quad \text{Friction Factor} \\
 q & \quad \text{Heat Flux (Wm}^{-2}\text{)} \\
 St & \quad \text{Stanton Number} \\
 \Delta p & \quad \text{Pressure Drop (Pa)} \\
 Gz & \quad \text{Graetz Number} \\
 Pr & \quad \text{Prandtl Number} \\
 Re & \quad \text{Reynolds Number}
\end{align*} \]

Greek letters

\[\begin{align*}
 \rho & \quad \text{Density (kgm}^{-3}\text{)} \\
 \mu & \quad \text{Dynamic Viscosity (Pa-sec)} \\
 \varnothing & \quad \text{Particle Volume Fraction} \\
 \tau & \quad \text{Wall Shear Stress (Pa)} \\
 \eta & \quad \text{Performance Factor}
\end{align*} \]

References

