Scholarly article on topic '13C-NMR Data of Three Important Diterpenes Isolated from Euphorbia Species'

13C-NMR Data of Three Important Diterpenes Isolated from Euphorbia Species Academic research paper on "Chemical sciences"

CC BY
0
0
Share paper
Academic journal
Molecules
OECD Field of science
Keywords
{""}

Academic research paper on topic "13C-NMR Data of Three Important Diterpenes Isolated from Euphorbia Species"

OPEN ACCESS

molecules

ISSN 1420-3049

www.mdpi.com/journal/molecules

Review

C-NMR Data of Three Important Diterpenes Isolated from Euphorbia Species

Qi-Cheng Wu 1, Yu-Ping Tang 1*, An-Wei Ding 1*, Fen-Qiang You 2, Li Zhang 1

and Jin-Ao Duan

1 Jiangsu Key Laboratory for TCM Formulae Research, Nanjing University of Chinese Medicine, Nanjing 210046, China

2 Affiliated Hospital, Nanjing University of Chinese Medicine, Kunshan, China

* Authors to whom correspondence should be addressed; E-Mail: yupingtang@njutcm.edu.cn (Y-P.T.); ltcmf@njutcm.edu.cn (A-W.D).

Received: 21 October 2009; in revised form: 2 November 2009 / Accepted: 4 November 2009 / Published: 6 November 2009

Abstract: Euphorbia species are widely distributed plants, many of which are used in folk medicine. Over the past twenty years, they have received considerable phytochemical and biological attention. Their diterpenoid constituents, especially those with abietane, tigliane, ingenane skeletons, are thought to be the main toxicant and bioactive factors. In this work, the utility of 13C-NMR spectroscopy for the structural elucidation of these compounds is briefly discussed.

Keywords: Euphorbia; diterpene; abietane; tigliane; ingenane; 13C-NMR data

1. Introduction

The Euphorbia is the largest genus in the plant family Euphorbiaceae, comprising about 2,000 known species [1]. Euphorbia are widely distributed throughout both hemispheres and range in morphology from large desert succulents to trees and even some small herbaceous plant types. Researched parts in various Euphorbia species include the roots, seeds, latex, lactiferous tubes, stem wood, stem barks, leaves, and whole plants.

Many studies have suggested that these plants have not only therapeutic relevance but that they also display toxicity [2]. Some constituents of Euphorbia species may be promising lead compounds for

drug development. Certain Euphorbia species have been reported to possess antitumor activity and have been recommended for use as anticancer remedies [3,4]. Their antitumor activity was mainly attributed to the presence of abietane diterpene derivatives, most of which contain lactone structures reported to possess potent antineoplastic activity toards various cancer cell lines [5-9]. Moreover, some Euphorbia species have been also used as medicinal plants for the treatment of skin diseases, gonorrhea, migraines, intestinal parasites, warts and for mediating pain perception [10-12]. Many researchers have shown that Euphorbia species also possess antiproliferative activity [13], cytotoxicity [14], antimicrobial activity [15], antipyretic-analgesic activity [16], inhibition of HIV-1 viral infection [17], inhibitory activity on the mammalian mitochondrial respiratory chain [18], etc.

As mentioned, there are also some reports of toxicity in Euphorbia species. Their toxic substances originate from the milky sap, which is a deterrent to insects and herbivores [19]. Besides, they may possess extreme proinflammatory and tumor promoting toxicities [20,21]. Severe pain and inflammation can result from contact with the eyes, nose, mouth and even skin, which may be due to the activation of protein kinase C enzyme [22]. The toxic constituents of Euphorbia species were considered to be a kind of specific diterpenes, globally called phorboids, which comprise tigliane, ingenane and daphnane diterpene derivatives [23,24].

Terpenes, including diterpenes and triterpenes, have been frequently found in Euphorbia species. Steroids, cerebrosides, glycerols, phenolics and flavonoids were also isolated from plants of the genus [10], but the compounds most relevant to the toxicity and considerable biological activities in Euphorbia are diterpenes, especially those with abietane, tigliane, and ingenane skeletons [10].

Many researchers have suggested that there was a close relationship between the structures and the biological activity, so the structure elucidation is very important for these diterpenes. In this review article, we summarize the 13C-NMR data of these three important diterpene skeleton types of Euphorbia species, covering 42 abietanes, 51 ingenanes and 30 tiglianes. The structure-activity relationship and the features on the chemical shifts were also briefly discussed.

2. Abietane Derivates Isolated from Euphorbia Species (Table 1)

Most plants of the genus Euphorbia contain abietane diterpenoids, which usually have an extra a,P-unsaturated y-lactone ring located between C-12 and C-13, and some of which have an epoxy ring at C-8 and C-14, or C-11 and C-12, as is the case of 7-14. Some carbons of these diterpenes, especially C-8, C-14, C-11 and C-12 are frequently substituted by hydroxyl groups or form double bonds. Compounds 32-36 indicate that the 18-Me and C-3 could form a three-membered ring. In addition, some abietanes (39-42) without lactone rings were also isolated from the genus Euphorbia. Many abietane diterpenoids exhibit inhibitive activity on various types of tumor cells, such as ANA-1, B16, Jurkat cells [25], K562 cells [7] and LNCaP cells [6]. By comparing the active compound 8 with the inactive one 12, it could be concluded that the C-11/C-12 epoxy ring system was necessary in mediating cytotoxicity. Compounds 2 and 3 are diastereomers, differing only in the stereochemistry at the chiral centers C-8 and C-14, but only compound 2 showed activity, which suggested that the ring C configuration is also crucial for the activity [25]. The a,P-unsaturated lactone is not the only necessary group for the cytotoxic effects, since compounds 3 and 12 do not show cytotoxicity [25]. In addition, the similar compounds 18, 19, 26 and 28 were tested in the inhibition of P-glycoprotein transport

activity. The higher inhibitory effect of 26 might be derived from the carbonyl position at C-2, most probably due to the conformational and functional changes in the P-gp induced by the particular structures of helioscopinolides [26].

Table 1. Abietane diterpenoids isolated from Euphorbia species.

No Name Species Ref

1 7ß-Hydroxy-8a,14-dihydro jolkinolide E E. terracina [27]

2 Yuexiandajisu D E. ebracteolata [25]

3 Yuexiandajisu E E. ebracteolata [25]

4 ent-8ß,14a-Dihydroxy-13(15)-ene-16(12ß)-abietanolide E. wallichii [28]

5 ent-8ß,14ß-Dihydroxy-13(15)-ene-16(12ß)-abietanolide E. wallichii [28]

6 Ebracteolatanolide B E. ebracteolata [25]

7 Ebracteolatanolide A E. ebracteolata [25]

8 Jolkinolide B E. fischeriana, [29]

E. sessiliflora [30]

9 17-Hydroxyjolkinolide B E. fischeriana [31]

10 17-Acetoxyjolkinolide B E. fischeriana [31]

11 17-Acetoxyjolkinolide A E. fischeriana [32]

12 Jolkinolide A E. wallichii [28]

E. fischeriana [29]

E. fidjiana [33]

E. guyoniana [34]

13 17-Hydroxyjolkinolide A E. fischeriana [32]

E. fidjiana [33]

14 3a-Hydroxyjolkinolide A E. wallichii [28]

15 7ß-Hydroxy-ent-abieta-8(14),13(15)-dien-12a,16-olide E. seguieriana [35]

16 7ß,9ß-Dihydroxy-ent-abieta-8(14),13(15)-dien-12a,16-olide E. seguieriana [35]

17 ent-Abieta-8(14),13(15)-dien-16,12-olide [Jolkinolide E] E. fidjiana [33]

E. characias [34]

E. guyoniana [36]

18 Helioscopinolide A E. pubescens [37]

E. semiperfoliata [38]

E. helioscopia [39]

19 Helioscopinolide B E. pubescens [37]

E. semiperfoliata [38]

E. helioscopia [39]

E. calyptrata [40]

20 Helioscopinolides H E. calyptrata [40]

21 ent-11 a-Hy droxy abieta-8(14),13(15)-dien-16,12 a-olide E. ebracteolata [25]

E. sessiliflora [30]

E. fidjiana [33]

22 ent-12-Hydroxy-12[R]-abieta-8(14),13(15)-dien-16,12-olide E. sessiliflora [30]

23 7ß,11 ß,12ß-Trihydroxy-ent-abieta-8(14),13(15)-dien-16,12-olide E. fischeriana [31]

24 Langduin B E. fischeriana [32]

25 Helioscopinolide C E. helioscopia [39,41]

26 Helioscopinolides F E. calyptrata [40]

Table 1. Cont.

No Name Species Ref

27 Helioscopinolide D E. calyptrate [42]

28 Helioscopinolide E E. calyptrate [42]

29 Helioscopinolides I E. calyptrata [40]

30 8a,14-Dihydro-7-oxo-jolkinolide E E. characias [36]

31 8a,14-Dihydro-7-oxohelioscopinolide A [caudicifolin] E. sessiliflora [30]

E. characias [36]

E. semiperfoliata [38]

32 3,4,18ß-Cyclopropa-8ß-hydroxy-14-oxo-ent-abiet-13,15-en-16,12-olide E. retusa [43]

33 3,4,18ß-Cyclopropa-14-oxo-ent-abieta-8,9,13,15-dien-16,12-olide E. retusa [43]

34 3,4,18ß-Cyclopropa-14-oxo-ent-abieta-7,13,15-dien-16,12-olide E. retusa [43]

35 3,4,18ß-Cyclopropa-7-hydroxy-14-oxo-ent-abieta-8,9,13,15-dien-16,12-olide E. retusa [43]

36 3,4,18ß-Cyclopropa-14-oxo-ent-abiet-7-en-16,12-olide E. retusa [43]

37 ent-16-Hydroxy-13[R]-pimar-8(14)-ene-3,15-dione E. fidjiana [33]

38 ent-l2a,16-Dihydroxy-13[R]-pimar-8(14)-ene-3,15-dione E. fidjiana [33]

39 13 ß-Hydroxy-ent-abiet-8(14)-en-7-one E. fischeriana [31]

40 Methyl 8ß,11 ß-dihydroxy-12-oxo-ent-abieta-13, 15(17)-dien-16-oate E. portulacoides [44]

41 11,16-Epoxy-enr-abieta-8,11,15-triene-13,14-dione E. guyoniana [34]

42 11-Hydroxy-enr-abieta-8,11,13-trien-15-one E. guyoniana [34]

Figure 1. Abietane diterpenoids isolated from Euphorbia species.

4 Rj = H, R2 = OH

5 Rj = OH, R2 = H

21 R = OH 28 R = H

23 R = H 24 R =OH

10 OAc

11 OAc

No. R1 R2 R3 R4

15 H H OH H

16 H H OH OH

1l H H H H

18 OH H H H

19 H OH H H

20 OH H H OH

21 H H H a-OH

25 R =OH 26 R = H

30 R = H 31 R = OH

3. Ingenane Derivates Isolated from Euphorbia Species (Table 2)

Ingenane diterpenoids have a very unique structural feature: they all have a same 5/7/7/3-tetracyclic ring system and a ketone bridge between C-8 and C-10. There is a double bond between C-1 and C-2 in ring A, and another double bond between C-6 and C-7 in ring B. A P-hydroxyl group is linked to C-4, so ring A/B must be trans-joined. Besides, ring D is a cyclopropane ring. Some positions at C-3, C-5, C-13, C-17 and C-20 may be linked to oxygen-substituted residues, such as hydroxyl, acetyl ester, long-chain alkyl ester, benzoyl ester groups, and so forth. This type of diterpenoids have been widely reported in many Euphorbia species. Some researchers have shown that these diterpenoids have antinematodal and termiticidal activity [45,46]. There were also reports about toxicity such as tumor promoting and proinflammatory activity [20,47,48]. Studies on the relationships between structure and irritant activity indicate that presence of a hydroxyl on C-20 is crucial for stimulatory properties. Introduction of an acetyl group in the 20-position results in a lower

irritancy [49]. Some 20-deoxyingenol diterpenes induced cell cleavage arrest, but this activity became weak when C-16 had an acyl residue [50]. Acetylation in the 5-position resulted into a considerable depression of irritancy [49]. The skin tumor promoting and irritant activities of the ingenol-3-esters depend on the length of the aliphatic chain in their ester moiety [51]. In addition, the presence of one free hydroxy group at C-3 or C-5 may play an important role in the antinematodal activity [45].

Table 2. Ingenane diterpenoids isolated from Euphorbia species.

No Name Species Ref

43 Ingenol E.kansui [45]

E. paralias [48]

44 13-O-Dodecanoylingenol E. kansui [45]

45 17-[(2Z,4E,6Z)-Deca-2,4,6-trienoyloxy] [ingenol] E. cauducifolia. [21]

46 20-Eicosanoate E. iberica [52]

47 3,5,20-0-Triacetylingenol E. kansui [45]

48 17-Hydroxyingenol tetraacetate E. kamerunica [53]

49 5,20-O-Diacetyl-3-O-(2",3"-dimethylbutanoyl)-13-O-dodecanoylingenol E. kansui [45]

50 20-Tetradecanoate-ingenol-3,5-diacetate E. broteri [54]

51 17-0-Acetyl-3-0-[(Z)-2-methyl-2-butenoyl]-20-deoxy-17-hydroxy-ingenol E. trigona [55]

52 20-0-Acetyl-3-0-[(Z)-2-methyl-2-butenoyl]ingenol E. trigona [55]

53 5,17,20-0-Triacetyl-3-0-[(Z)-2-methyl-2-butenoyl]-17-hydroxyingenol E. trigona [55]

54 3-O-(2,3-Dimethylbutanoyl)-13-O-dodecanoylingenol E. kansui [45]

E. cyparissias [46]

55 3-O-(2,3-Dimethylbutanoyl)-13-O-decanoylingenol E. kansui [45]

E. cyparissias [46]

56 3,20-0-Diacetylingenol 5-O-(2'E,4'Z)-tetradecadienoate E. petiolata [56]

57 5,20-0-Diacetylingenol 3-O-(2'E,4'Z)-tetradecadienoa E. petiolata [56]

58 Ingenol-3-O-(2'E,4'Z)-tetradecadieno E. petiolata [56]

59 5,20-0-Isopropy 1ideny 1ingero1 3-O-(2'Z,4'Z)-tetradecadienoate E. petiolata [56]

60 20-0-Acetylingenol-3-0-(2"E,4"Z)-decadienoate E. petiolata [57]

61 20-Acetyl-ingenol-3-decadienoate E. broteri [54]

62 3-Tetradecanoate-ingenol-5,20-diacetate E. broteri [54]

63 5-Tetradecanoate-ingenol-3,20-diacetate E. broteri [54]

64 17-Benzoyloxy-3-0-(2,3-dimethylbutanoyl)-20-deoxyingenol E. esula [58]

65 17-Benzoyloxy-3-0-(2,3-dimethylbutanoyl)-13-(2,3-dimethylbutanoyloxy)-20-deoxyingenol E. esula [58]

66 17-Benzoyloxy-3-O-(2,3-dimethylbutanoyl)-13-(2,3-dimethylbutanoyloxy) ingenol E. esula [58]

67 13,17-Dibenzoyloxy-3-O-(2,3-dimethylbutanoyl)ingenol E. esula [58]

68 13,17-Dibenzoyloxy-3-0-(2,3-dimethylbutanoyl)-20-deoxyingenol E. esula [58]

69 3-O-(2,3-dimethylbutanoyl)-13-octanoyloxyingenol E. esula [58]

70 17-Benzoyloxy-3-O-(2,3-dimethylbutanoyl)-13-octanoyloxyingenol E. esula [58]

71 17-Benzoyloxy-20-0-(2,3-dimethylbutanoyl)-13-(2,3-dimethylbutanoyloxy)ingenol E. esula [58]

72 17-Benzoyloxy-13-octanoyloxyingenol E. esula [58]

73 20-0-Benzoyl-17-benzoyloxy-13-octanoyloxyingenol E. esula [58]

74 17-Benzoyloxy-20-0-(2,3-dimethylbutanoyl)-13-octanoyloxyingenol E. esula [58]

75 3-O-Benzoyl-17-benzoyloxy-13-(2,3-dimethylbutanoyloxy)ingenol E. esula [58]

76 3-O-Benzoyl-13,17-dibenzoyloxyingenol E. esula [58]

77 3-O-Benzoyl-13-octanoyloxyingenol E. esula [58]

Table 2. Cont.

No Name Species Ref

78 3-O-Benzoyl-17-benzoyloxy-13-octanoyloxyingenol E. esula [58]

79 3-0-Benzoyl-17-benzoyloxy-13-octanoyloxy-20-deoxyingenol E. esula [58]

80 Ingenol-3-angelate-5,20-diacetate E. canariensis [59]

E. acrurensis [б0]

81 5-Deoxyingenol-3-angelate-20-acetate E. canariensis [59]

82 17-Acetoxyingenol-5,20-diacetate-3-angelate E. kamerunica [53]

83 Ingenol-3-angelate E. canariensis [59]

84 17-Hydroxyingenol-3-angelate-17-benzoate E. canariensis [59]

85 17-Hydroxyingenol-3-angelate-20-acetate-17-benzoate E. canariensis [59]

86 17-Acetoxyingenol-20-acetate-3-angelate E. canariensis [59]

87 17-Hydroxyingenol 17-benzoate 20-angelate E. canariensis [59]

88 3-O-Angeloyl-17-[(2Z,4E,бZ)-deca-2,4,б-trienoyloxy]ingenol E. cauducifolia [21]

89 17-Acetyloxy-3-O-angeloyl-ingenol E. cauducifolia [21]

90 3-O-Angeloyl-17-(benzoyloxy)ingenol E. cauducifolia [21]

91 20-0-Acetyl-3-0-angeloyl-17-hydroxyingenol E. cauducifolia [21]

92 20-0-Acetyl-3-0-angeloyl-17-(benzoyloxy)ingenol E. cauducifolia [21]

93 3-0-Acetyl-20-0-angeloyl-17-hydroxyingenol E. cauducifolia [21]

47 R = H

48 R = OAc

49 R = OCO(CH2)10CH4

OCO(CH2)i2CH3

H3CHC=(H3C)CCOO HO

51 R1 = H, R2 = H, R3 = OAc

52 R1 = OAc, R2 = OAc, R3 = H

53 R1 = OAc, R2 = OAc, R3 = OAc

(H3C)2HC(H3C)HCCOO

'"""H H

54 R = OCO(CH2)10CH3

55 R = OCO(CH2)8CH3

56 r, = Ac, R2= (2'E,4'Z)-tetradecadienoyl, R3 = Ac

57 R, = (2'E,4'Z)-tetradecadienoyl, R2 = Ac, R3 = Ac

58 R, = (2'E,4'Z)-tetradecadienoyl, R2 = H, R3 = H

59 R, = (2'E,4'Z)-tetradecadienoyl, R2 = isopropylidenyl, R3 = isopropylidenyl

60 R, = (2'E,4'Z)-tetradecadienoyl, R2 = H, R3 = Ac

61 R1 = CO(CH=CH)2(CH2)4Me, R2 = H, R3 = Ac

62 R1 = CO(CH2)12CH3, R2 = Ac, R3 = Ac

63 R, = Ac, R2 = CO(CH2)12CH3, R3 = Ac

R2 Г— R3

15"'""'1б 14^"///ah

RiO HO

C: CH3(CH2)6CO

No. Ri Rj R4 No. Ri R- R; R4

64 A H OB H 72 H ос OB OH

65 A OA OB H 73 H ОС OB OB

66 A OA OB он 74 H ОС OB OA

67 A OB OB он 75 в OA OB OH

68 A OB OB H 76 в OB OB OH

69 A ос- H он 77 в ОС H OH

70 A ос: OB он 78 в ОС OB OH

71 H OA OB OA 79 в ОС OB H

AngO HO

80 R1 = OAc, R2 = H

81 R1 = H, R2 = H

82 R1 = OAc, R2 = OAc

83 R = H

84 R = OBz

85 R = OBz

86 R = OAc

Figure 2. Cont.

4. Tigliane Derivates Isolated from Euphorbia Species (Table 3)

The tigliane diterpenoids in Euphorbia have a 5/7/6/3-tetracyclic ring system. Rings A/B are usually in trans-integrated configuration, as in compounds 94-98 and 100-120. Only a few tigliane diterpenoids, such as 99 and 121, are in cis-configuration. Rings B/C are joined in trans-configuration and Rings B/C in cis-configuration. Most tigliane diterpenoids have polyhydroxy groups located on C-4, C-9, C-13 and C-20. C-3 forms a carbonyl group. C1,2 and C6,7 form double bonds, respectively. Like the abietane and the ingenane diterpenoids, the hydroxyl groups of tigliane diterpenoids are easily esterified, as in compounds 98-103. This type of macrocyclic deterpene, which is widespread in the seeds, roots, latex and stem of Euphorbia genus, is the main toxic constituent causing irritant, proinflammatory and tumor promoting activity [18,61,62]. When the C12-OH and C13-OH were esterified as a bis-ester, the tumor promoting activity was reinforced at the same time. For example, 12-O-tetradecanoylphorbol 12-acetate (TPA) is well-known as a tumor promotor. The diterpene ester with a saturated aliphatic long chain acyl group exhibited high irritant activity and high tumor promoting activity, and the highly unsaturated analogue exhibits high irritant activity, but very weak tumor promoting activity, suggesting that the irritant activity but not the tumour promoting activity of these diterpenoids is related to the degree of unsaturation of the aliphatic long chain [63]. The absence of a C20-OH is known to be important for the irritant and tumor promoting activities of phorbol esters [64]. Introduction of an acetyl group in the 20-position gives rise to a lower irritancy [65]. Compounds 122 and 123 belong to the daphnane diterpene group, which may be derived from the tigliane diterpenoids by cleavage of ring D and isopropenyl linked on C-13.

Table 3. Tigliane diterpenoids isolated from Euphorbia species.

No. Name Species Ref

94 13-Acetoxy-12-deoxyphorbol [Prostratin] E. fischeriana [66]

95 20-Hydroxy-12-deoxyphorbol 13-(cis-9,10-methylene)-undecanoate E. poisonii [14]

96 20-Hydroxy-12-deoxyphorbol angelate E. poisonii [14]

97 12-Deoxyphorbaldehyde-l3-acetate E. fischeriana [31]

98 12-Deoxyphorbaldehyde-13-hexadecacetate E. fischeriana [31]

99 4,12-Dideoxy(4a)phorbol-13-hexadecanoate E. guyoniana [67]

100 12-0-(2Z,4E-0ctadienoyl)-4-deoxyphorbol-13,20-diacetate E. broteri [54]

101 4,12,20-Trideoxyphorbol-13-(2,3-dimethyl)butyrate E. pithyusa subsp [68]

102 12-0-(2Z,4E-octadienoyl)-phorbol-13,20-diacetate E. broteri [54]

103 12-Deoxyphorbol-13-(9Z)-octadecanoate-20-acetate E. fischeriana [31]

104 13-0-Acetyl-20-0-benzoyl-12-deoxyphorbol E. cornigera [69]

105 13-0-Acetyl-20-0-p-methoxybenzoyl-12-deoxyphorbol E. cornigera [69]

106 13-0-Acetyl-20-0-decanoyl-12-deoxyphorbol E. cornigera [69]

107 13-0-Butanoyl-20-0-decanoyl-12-deoxyphorbol E. cornigera [69]

108 13-0-Hexanoyl-20-0-decanoyl-12-deoxyphorbol E. cornigera [69]

109 13-0-0ctanoyl-20-0-decanoyl-12-deoxyphorbol E. cornigera [69]

110 13,20-Didecanoylphorbol E. cornigera [69]

111 13-0-Dodecanoyl-20-0-decanoyl-12-deoxyphorbol E. cornigera [69]

112 13-0-Decanoyl-20-0-angelyl-12-deoxyphorbol E. cornigera [69]

113 13-0-Decanoyl-20-0-tiglyl-12-deoxyphorbol E. cornigera [69]

114 12-Deoxyphorbol 20-acetate 13-angelate E. poisonii [14]

115 12-Deoxyphorbol 20-acetate 13-phenylacetate E. poisonii [14]

116 4,20-Dideoxyphorbol 12,13-bis(isobutyrate) E. obtusifolia [70]

117 4-Deoxyphorbol 12,13-bis(isobutyrate) E. obtusifolia [70]

118 17-Acetoxy-4-deoxyphorbol 12,13-bis(isobutyrate) E. obtusifolia [70]

119 17-Acetoxy-4,20-dideoxyphorbol 12,13-bis(isobutyrate) E. obtusifolia [70]

120 4-Deoxyphorbol 12,13-bis(isobutyrate) 20-acetate E. obtusifolia [70]

121 4-Epi-4-Deoxyphorbol 12,13-bis(isobutyrate) E. obtusifolia [70]

122 20-(4-Hydroxy-3-methoxyphenylacetate)9,13,14-orthophenylacetate E. poisonii [14]

123 20-Hydroxyresiniferol 9,13,14-orthophenylacetate E. poisonii [14]

Figure 3. Tigliane diterpenoids isolated from Euphorbia species.

94 R = Ac

95 R =

96 R = Tigloyl

97 R = Ac

98 R = CO(CH2)14CH3

""«¡и

CH2OR3

99 R1 = H, R2 = CH3(CH2)14CO, R3 = H

100 R1 = OCO(CH=CH)2(CH2)2CH3, R2 = Ac, R3 = Ac

OH 101

116-121

'"""III

CH2OAc

102 Ri = OCO(CH=CH)2(CH2)3CH3, R2 = Ac,

103 Ri = H, R2 = C O(CH2 )7CH=CH( CH2 )7CH3

CH2OR2

104-115

No. R1 R2 No. R1 R2

104 Acetyl Benzoyl 113 Decanoyl Tigloyl

105 Acetyl p-Methoxybenzoyl 114 Tigloyl Ac

106 Acetyl Decanoyl 115 PhCH2CO Ac

107 Butanoyl Decanoyl 116 H H

108 Hexanoyl Decanoyl 117 OH H

109 Octanoyl Decanoyl 118 OH OAc

110 Decanoy Decanoyl 119 H OAc

111 Dodecanoyl Decanoyl 120 OAc H

112 Decanoyl Angeloyl 121 4-Epi-117

5. 13C-NMR Data of Diterpenes

Table 4 shows the 13C-NMR data of the diterpenoids 1-123. All the 13C-NMR data were recorded in CDCl3. The structures and the carbon chemical shifts of the abietane diterpenoids are quite different from each other. Here we only discuss the most frequent abietane lactones 1-35. Four carbons (C-12, C-13, C-15 and C-16) of the lactone ring are the main feature, and their chemical shifts are around 5C 78.5-80.0, 148.4-165.0, 117.0-132.8 and 167.0-178.0, respectively.

Table 4. 13C-NMR data (in CDCl3) of diterpenes from Euphorbia species.

Compound / 8C (in ppm)

Carbon

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 38.0 40.9 38.3 43.2 40.5 41.9 41.6 41.4 41.4 41.3 40.0 41.4 39.3 37.6

2 1 8.4 18.0 17.3 20.1 18.7 17.4 17.1 18.5 18.5 18.5 18.4 18.4 18.4 27.0

3 42.0 40.9 41.3 43.2 43.1 39.9 38.6 40.0 39.2 39.0 41.5 39.8 41.5 78.2

4 32.7 32.3 32.4 34.2 34.1 37.8 37.6 33.3 33.5 33.5 33.5 33.4 33.5 39.2

5 46.8 54.7 55.3 56.6 57.0 55.6 55.4 53.2 53.6 53.5 53.5 53.4 53.5 52.9

6 30.2 19.8 16.7 22.0 19.2 18.0 17.7 21.2 21.0 20.9 20.8 20.8 20.9 20.5

7 68.9 39.9 34.9 43.1 36.3 35.5 35.4 36.5 36.6 35.7 33.8 34.0 34.0 33.9

8 35.1 75 74.4 75.7 77.6 75.0 74.8 60.8 66.9 67.4 61.3 61.1 61.3 61.0

9 42.5 62.6 56.3 58.0 47.4 72.0 72.1 66.6 47.0 47.8 51.9 51.7 51.8 51.6

10 38.0 36.9 37.2 40.3 39.0 40.5 40.5 48.2 39.1 39.3 41.6 41.3 41.4 41.1

11 27.5 67.3 65.0 29.9 29.0 57.2 65.4 61.3 61.6 61.9 107.6 104.1 106.4 103.4

12 78.5 79.0 79.7 79.0 79.9 79.7 79.8 85.4 85.5 85.3 149.5 147.4 147.3 147.6

13 1 63.4 157.5 160.3 165.3 166.5 161.2 160.3 148.4 150.8 154.5 147.2 144.9 146.5 144.8

14 26.7 71.9 71.8 73.5 74.3 65.2 57.4 55.6 53.6 55.3 54.3 54.4 54.4 54.3

15 120.5 124.2 125.9 123.2 125.5 125.0 126.0 130.1 150.8 128.3 122.3 125.1 127.4 125.4

16 175.4 175.4 176.2 178.0 177.8 175.4 175.3 169.8 168.2 167.4 170.5 170.6 169.2 170.4

17 8.4 6.7 7.9 8.2 9.4 9.2 9.0 8.6 56.5 54.9 55.4 8.6 56.3 8.6

18 33.1 33.0 32.4 34.6 34.1 16.7 16.4 33.2 33.5 33.5 33.4 33.4 33.5 28.3

19 21.6 20.8 20.6 22.4 22.4 21.8 21.3 22.1 21.9 21.9 21.9 21.9 21.9 15.5

20 12.6 16.8 15.7 18.1 15.4 33.6 33.7 15.4 15.6 15.1 15.0 14.9 15.1 15.0

Compound / 8C (in ppm)

Carbon 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 41.9 31.7 39.7 37.4 32.1 29.9 39.4 39.0 39.6 40.2 51.2 55.9* 30.5 37.4

2 19.0 18.7 19.1 27.5 25.7 27.3 19.0 18.6 18.8 18.9 209.4 209.4 34.2 34.4

3 39.5 41.6 41.9 78.5 75.6 78.3 41.7 41.7 41.7 41.8 82.4 54.0* 216.4 215.6

4 33.1 33.2 33.6 39.0 37.8 39.0 33.6 33.4 32.9 41.0 45.0 38.7 47.1 47.5

5 47.1 39.9 55.3 54.3 48.4 45.4 55.4 54.0 46.8 46.7 53.4 54.5 46.0 54.8

6 31.0 31.0 23.9 23.4 23.4 23.0 23.8 22.3 29.9 30.7 23.0 23.6 24.1 24.6

7 72.4 74.4 37.2 36.8 37.1 32.7 37.1 36.0 71.5 71.1 36.3 36.4 32.2 36.6

8 151.2 148.4 156.3 151.4 152.0 152.6 152.6 154.4 153.4 155.2 149.4 149.5 152.2 150.2

9 46.7 79.1 51.9 51.5 51.6 77.2 60.8 51.4 54.8 55.3 51.3 51.3 76.9 50.7

10 41.9 44.7 41.6 41.2 41.3 44.2 40.3 38.9 40.9 32.7 46.9 46.2 43.8 40.9

11 27.2 38.4 27.5 27.5 27.5 39.7 64.6 31.2 69.6 70.2 27.6 27.6 40.0 27.8

12 76.1 77.2 76.1 75.9 76.0 77.1 79.4 102.4 102.7 104.3 75.3 75.3 76.9 75.6

13 155.1 153.9 152.3 156.0 156.0 154.7 150.1 154.2 152.8 156.0 155.0 155.0 154.6 155.5

14 115.9 118.8 113.9 114.2 114.1 115.7 113.5 113.4 114.7 115.4 115.2 114.9 115.9 114.8

15 118.9 130.0 116.2 116.4 116.4 117.9 118.2 116.3 121.0 124.0 117.5 117.3 118.1 117.1

16 174.9 174.3 175.4 175.3 175.2 174.7 175.4 173.1 173.6 172.1 174.9 174.7 174.6 175.1

17 8.5 8.6 8.3 8.2 28.7 28.9 8.5 8.1 8.4 55.5 8.3 33.5 27.1 26.5

18 33.6 33.8 33.9 28.6 22.2 16.0 33.9 33.5 32.9 32.9 29.5 23.0 21.7 21.8

19 21.7 22.0 21.8 15.6 16.7 17.5 21.8 22.0 21.6 21.4 16.4 17.3 17.8 16.2

20 16.1 17.4 16.8 16.7 8.2 8.4 17.3 14.6 14.3 14.4 17.3 8.2 8.3 8.3

Compound / SC (in ppm)

Carbon

29 30 31 32 33 34 35 36 37 38 39 40 41 42

1 23.4* 37.9 2S.2 33.б 30.4 31.0 29.S 31.4 37.5 37.4 3S.9 39.3 3б.б 3б.1

2 145.2 1S.2 26.S 1S.S 19.3 19.1 19.2 19.2 34.7 34.б 1S.4 1S.31 19.0 19.2

3 200.2 41.4 7S.1 19.1 1S.5 19.9 1S.4 19.9 21б.5 21б 41.S 41.5 41.3 41.3

4 44.0* 32.7 37.2 15.7 1б.4 14.7 1б.б 14.S 47.S 47. S 33.2 33.1 33.б 33.7

5 52.б 53.9 43.S 51.1 47.б 44. S 41.б 44.1 55.0 54.7 49.S 54.2 52.0 52.S

б 23.2 3S.9 35.7 22.7 20.б 27.5 2S.9 27.б 23.1 22.7 37.5 19.21 17.3 1S.9

7 3б.7 209.S 209.4 33.5 24.4 140.4 б2.5 139.9 35.5 34.б 200.7 41.01 2б.2 33.0

S 14S.9 44.2 49.4 7б.1 134.б 136.S 135.7 134.S 139.9 139.9 13S.9 б9.5 143.4 139.1

9 4S.3 50.1 53.0 52.б 1б0.5 41.б 1б4.9 40.б 49.0 50.0 51.S б1.3 150.3 141.5

10 41.7* 37.4 39.1 3б.б 3S.9 34.3 39.S 35.2 3S.1 37.7 35.9 37.S 39.3 39.S

11 27.б 2S.1 23.S 27 34.2 27.2 33.9 27.7 1 S.6 2б.3 1S.6 71.7 152.0 154.б

12 75.4 77.5 77.0 79.5 7S.S 77.9 7S.4 7б.7 31.0 69.S 29.7 197.5 125.4 112.S

13 154.9 1б0.7 1б0.4 153.3 150.б 151.1 149.9 52.9 4б.7 52.1 71.S 13б.9 17б.4 135.0

14 11б.0 24.0 3S.5 19б 1S5.7 1S7.5 1S7.0 19б.2 123.7 121.9 139.5 151.4 1S4.S 123.0

15 117.7 121.9 122.0 131.S 131.1 132.5 132.S 40.0 214.1 215.1 37.S 137.3 120.2 19S.0

1б 174.9 174.S 174.S 172.9 172. S 173.5 173.3 17S.2 64.S б5.2 17.б - 144.2 2б.4

17 27.0 S.4 S.4 9.4 9.S 10.0 9.9 1б.2 23.S 17.5 1б.2 12S.S S.5 33.7

1S 2.0 13.1 27.б 21.5 22.3 20.5 22.2 20.4 25.S 25.б 32.б 33.S 33.5 22.2

19 19.4 33.5 14.9 23.9 23.2 24.5 23.2 24.7 22.3 22.3 21.2 21.9 21.9 19.б

20 S.3 21.0 13.1 1б.9 16.S 11.5 15.7 12.4 14.7 14.3 14.1 17.S 20.4 -

Compound / SC (in ppm)

Carbon 43 44 45 46 47 48 49 50 51 52 53 54 55 56

1 130.0 129.0 131.7 130.0 132.2 131.S 130.5 132.2 132.1 132.2 131.б 131.4 131.4 132.1

2 13S.S 139.3 136.3 13S.S 133.2 133.б 13б.0 133.4 135.S 135.S 13б.0 13б.2 13б.2 133.3

3 S0.5 S0.3 S0.2 80.6 S2.2 82.0 81.7 82.1 82.9 82.7 81.6 82.5 82.5 82.1

4 S4.3 S4.0 74.7 S4.4 85.8 S5.7 S5.7 86.0 85.0 84.9 S5.S S4.5 84.4 86.0

5 75.3 75.2 75.0 73.S 74.S 74.б 74.S 75.0 77.3 74.8 74.8 7б.7 7б.7 75.0

7 127.4 12б.2 128.4 12S.3 131.9 131.0 129.7 131.S 123.1 129.5 130.9 127.2 127.3 128.2

S 44.0 43.2 42.9 44.1 43.б 43.1 42.9 43.7 43.0 43.6 43.2 42.6 42.6 43.7

9 207.S 20б.5 205.2 20S.0 205.4 204.б 204.7 205.4 20б.0 20б.2 204.7 205.9 205.9 205.б

10 72.4 72.б 72.0 72.6 71.9 71.S 71.S 72.1 72.0 72.1 72.0 71.S 71.8 72.1

11 39.S 3S.6 37.7 39.б 38.6 38.6 37.9 3S.7 3S.7 3S.5 38.6 37.4 37.4 38.6

12 30.S 35.0 35.2 31.0 31.1 30.S 35.0 31.1 30.S 31.2 30.7 35.0 35.0 31.2

13 23.1 6S.S 29.1 23.9 23.1 23.2 б9.1 23.1 24.0 24.0 24.1 б9.0 б9.0 23.2

14 22.9 2S.2 29.4 23.2 22.9 24.0 2S.0 23.3 23.7 23.3 23.2 2S.2 28.2 23.0

15 24.0 30.2 30.1 22.7 24.4 27.7 30.7 24.4 27.4 2S.5 27.6 30.3 30.3 24.3

1б 2S.5 22.5 24.7 2S.5 2S.4 24.2 22.2 2S.5 24.3 23.1 24.2 22.4 22.5 28.4

17 15.4 16.7 66.8 15.5 15.5 б5.7 16.8 15.4 65.6 15.5 б5.7 16.7 16.7 15.5

1S 17.3 1S.4 18.2 17.4 17.0 1б.б 18.0 17.1 1б.7 17.3 16.6 18.2 18.2 17.1

19 15.5 15.4 15.5 15.4 15.4 15.4 15.3 15.б 15.б 15.б 15.4 15.4 15.5 15.4

20 б7.2 66.8 62.3 66.4 65.8 65.7 65.7 65.9 21.9 66.8 65.7 67.1 67.2 65.9

Compound / SC (in ppm)

Carbon

S1 S8 S9 60 61 62 63 64 6S 66 61 68 69 10

1 132.2 132.0 132.2 132.2 132.2 132.0 132.3 132.1 131.5 131.0 131.2 131.8 131.5 131.1

2 133.4 135.9 135.9 136.1 136.1 - 133.5 136.2 136.3 136.8 136.8 136.4 136.2 136.7

3 82.5 82.7 81.8 82.8 82.5 82.4 82.4 82.0 82.7 82.1 82.2 82.9 82.6 82.0

4 86.0 84.8 84.1 85.0 85.1 - 85.9 85.2 84.9 84.8 84.9 85.0 84.5 84.8

5 78.5 76.7 74.0 74.9 75.0 75.0 75.1 76.7 77.0 76.0 76.5 77.4 76.9 76.0

6 135.8 139.4 136.6 136.1 136.2 - 135.5 138.4 138.2 140.2 140.1 138.3 139.6 140.1

7 128.4 128.2 128.3 129.3 129.4 132.0 131.7 122.8 122.0 125.6 126.1 122.2 127.3 125.7

8 43.7 43.5 43.6 43.9 43.8 43.7 43.7 42.8 42.6 42.7 43.0 42.9 42.7 42.6

9 205.7 207.0 207.6 206.2 206.1 - 205.3 206.7 205.1 205.2 204.9 205 205.8 205.1

10 72.2 72.0 72.3 72.1 72.3 - 72.1 71.5 71.9 71.9 71.9 72.0 71.9 71.7

11 38.5 38.4 37.6 38.8 38.6 38.6 38.7 38.5 38.1 37.8 38.0 38.4 37.5 37.8

12 31.1 31.2 31.2 31.2 31.3 31.2 31.2 30.5 35.6 35.6 35.3 35.3 34.4 35.0

13 23.2 23.3 23.5 23.3 23.4 23.1 23.1 23.8 68.3 68.3 69.3 69.3 69.0 68.5

14 23.0 23.0 23.0 23.1 23.3 23.3 23.3 23.4 28.7 28.5 28.6 29.0 28.3 28.4

15 24.3 24.0 24.0 24.0 24.0 - 24.4 27.5 33.9 34.0 34.5 34.4 30.3 34.0

16 28.4 28.5 28.5 28.5 28.5 28.5 28.5 24.2 18.7 18.5 18.7 18.7 22.5 18.5

17 15.6 15.5 15.6 15.5 15.5 15.4 15.4 66.2 65.5 65.5 65.6 65.7 16.7 65.5

18 17.1 17.3 17.5 17.3 17.3 17.1 17.1 16.4 18.0 18.1 18.0 17.9 18.2 17.9

19 15.4 15.5 15.5 15.6 15.5 15.6 15.6 15.3 15.5 15.4 15.6 15.6 15.4 15.5

20 66.1 67.1 64.3 66.8 66.7 65.9 65.6 21.6 21.7 66.6 67.0 21.8 67.2 66.7

Compound / SC (in ppm)

Carbon -

11 12 13 14 1S 16 11 18 19 80 81 82 83 84

1 128.6 128.6 128.4 128.8 131.4 131.5 132.0 131.5 132.0 132.0 132.0 131.5 132.1 131.6

2 139.7 139.8 139.7 139.6 136.8 136.8 136.0 136.8 136.0 136.0 136.0 133.7 135.7 136.2

3 80.4 80.2 80.1 80.4 83.0 83.0 83.3 83.0 83.6 81.8 85.7 81.5 82.5 82.2

4 84.3 84.3 84.3 84.3 84.9 85.1 84.6 84.9 85.1 85.8 80.5 85.7 84.7 84.9

5 73.8 75.2 74.0 73.8 77.3 76.3 76.9 77.2 77.2 74.9 43.7 74.6 77.1 76.6

6 137.7 141.2 137.5 137.8 139.8 140.2 139.0 139.8 138.0 133.0 132.0 135.9 139.0 139.7

7 126.8 125.2 125.5 126.7 126.4 126.0 128.0 126.4 122.0 132.0 129.0 130.8 128.6 127.2

8 43.2 43.3 43.3 43.3 42.9 43.0 42.7 42.9 42.8 43.6 44.2 43.1 43.5 43.2

9 204.9 205.4 205.3 204.8 205.0 205.1 206.0 204.9 205.0 206.0 208.0 204.6 206.6 205.9

10 72.9 72.7 72.8 72.7 72.2 72.0 72.0 72.0 72.1 72.0 75.0 71.9 72.0 72.0

11 38.8 38.8 38.8 38.9 38.0 38.2 37.6 38.1 38.5 38.6 37.0 38.5 38.3 38.4

12 35.9 35.4 35.6 35.4 35.9 35.3 35.2 35.4 35.4 31.1 31.5 30.6 31.1 30.9

13 68.1 68.4 68.3 68.3 69.4 69.3 69.0 68.6 68.6 23.1 23.7 23.1 23.3 24.3

14 28.7 28.7 28.6 28.7 28.6 28.6 28.3 28.6 28.8 22.9 23.2 23.9 23.0 23.5

15 33.8 33.9 33.9 33.9 34.0 34.4 30.3 34.1 34.1 24.3 23.6 27.5 24.0 27.7

16 18.8 18.7 18.6 18.7 18.9 18.6 22.5 18.7 18.7 28.4 28.6 24.1 28.5 24.6

17 65.4 65.7 65.5 65.5 65.5 65.6 16.7 65.5 65.6 15.4 15.5 65.6 15.5 66.2

18 18.5 18.2 18.2 18.2 18.4 18.1 18.4 18.1 18.1 17.0 18.2 16.5 17.3 16.9

19 15.2 15.4 15.3 15.3 15.6 15.6 15.6 15.6 15.6 15.5 15.6 15.3 15.5 15.6

20 65.7 66.6 66.4 65.7 67.1 66.9 67.4 67.1 21.8 65.9 68.5 65.6 67.5 67.2

Compound / SC (in ppm)

Carbon -

85 86 87 88 89 90 91 92 93 94 95 96 97 98

1 131.б 131.7 131.3 131.3 131.7 131.7 131.7 131.7 131.7 160.6 1б1.4 1б1.3 1б0.4 160.5

2 13б.2 136.4 136.8 136.8 13б.3 136.3 136.7 13б.3 13б.3 132.9 132.7 132.7 133.5 133.5

3 82.3 82.5 S4.7 S4.7 S4.2 S4.4 83.6 S3.9 84.1 209.2 209.3 209.4 208.3 20S.4

4 S4.9 S4.9 74.2 74.2 74.2 74.5 74.3 74.4 74.1 73.8 73.8 73.8 72.8 72.8

5 74.7 74.9 74.0 74.0 74.5 74.2 74.3 74.3 75.0 3S.7 38.6 3S.5 34.4 34.б

б 13б.4 13б.3 136.8 136.8 13б.7 136.5 136.7 13б.3 13б.б 140.4 139.S 140.0 142.9 142.9

7 12S.2 12S.7 12S.5 128.5 12S.3 128.4 128.0 12S.1 12S.4 130.4 130.б 130.4 15S.1 158.2

S 43.2 43.3 42.1 42.1 42.9 42.9 42.4 42.8 42.9 39.1 39.2 39.1 41.4 41.5

9 205.5 205.5 207.2 207.2 20б.0 205.7 205.0 205.4 205.2 7б.0 7б.0 7б.2 77.1 77.1

10 72.0 72.1 71.7 71.7 71.9 71.9 71.7 71.S 71.9 5б.2 55.S 55.7 55.S 55.S

11 3S.5 3S.5 37.2 37.2 37.7 37.б 37.б 37.б 37.7 3б.б 3б.3 3б.3 3б.5 3б.5

12 30.9 30.9 34.9 34.9 35.1 35.1 35.2 35.3 35.2 32.3 32.0 31.9 31.7 31.S

13 24.3 24.3 29.4 29.4 29.4 29.3 29.5 29.8 29.2 63.8 63.2 63.2 63.0 б3.0

14 23.5 23.5 29.1 29.1 29.б 29.4 29.S 29.б 29.7 32.S 32.б 32.S 32.0 32.1

15 27.7 27.5 29.7 29.7 30.2 29.S 30.0 30.0 30.0 22.5 2б.б 22.9 22.9 22.7

1б 24.5 24.4 24.8 24.S 24.S 24.9 24.7 24.9 24.7 23.2 23.1 23.б 23.1 23.2

17 66.1 65.6 бб.2 бб.2 бб.3 бб.3 62.5 66.3 б2.2 15.3 15.4 15.4 15.3 15.3

1S 1б.9 17.0 18.5 18.5 18.6 18.7 18.8 18.2 18.4 1S.S 18.6 18.6 1S.5 18.6

19 15.б 15.б 16.1 16.1 15.3 16.0 1б.0 15.9 15.5 9.9 10.1 10.1 10.1 10.1

20 бб.5 бб.7 62.2 б2.2 62.4 62.3 65.5 66.3 бб.4 б7.9 68.3 68.2 193.S 193.S

Compound / SC (in ppm)

Carbon -

99 100 101 102 103 104 105 106 107 108 109 110 111

1 15б.9 159.7 161.0 160.8 161.3 160.3 160.3 160.3 160.3 160.3 160.3 160.3 160.3

2 143.0 137.3 13S.3 135.7 132.9 136.3 13б.3 136.2 13б.2 136.3 13б.3 136.2 136.3

3 213.S 20S.9 203.0 208.6 20S.9 210.2 210.3 210.3 210.3 210.3 210.3 210.3 210.3

4 50.1 42.6 44.4 73.б 73.7 44.5 44.5 44.5 44.5 44.б 44.5 44.б 44.б

5 25.1 35.1 34.0 38.8 3S.9 34.0 34.0 34.1 34.0 34.0 34.0 34.1 34.1

б 13б.3 13б.5 13б.2 132.9 135.2 139.б 139.б 139.7 139.7 139.б 139.б 139.б 139.7

7 127.7 130.2 126.8 132.7 133.7 125.0 125.7 125.7 125.7 125.7 125.б 125.6 125.6

S 41.0 42.3 41.9 39.4 39.5 42.2 42.2 42.2 42.2 42.2 42.2 42.2 42.2

9 75.5 77.S 75.2 7S.2 75.9 77.9 77.9 77.9 77.9 77.9 77.9 77.9 77.9

10 47.1 54.1 53.9 5б.2 55.S 54.3 54.3 54.3 54.4 54.3 54.3 54.3 54.3

11 37.1 44.1 4б.2 43.2 3б.3 42.3 42.3 42.3 42.3 42.3 42.3 42.4 42.4

12 30.5 76.1 31.S 76.1 31.9 5б.7 5б.7 54.S 56.8 5б.7 5б.7 5б.7 52.7

13 62.7 б5.4 62.8 б5.7 63.6 б5.0 65.0 б5.0 65.1 б5.0 б5.0 б5.0 б5.0

14 33.1 35.4 32.0 36.1 32.4 35.9 35.S 35.9 3б.0 35.9 35.9 3б.0 3б.0

15 22.5 25.7 22.5 25.7 22.6 25.S 25.8 25.S 25.S 25.S 25.S 25.S 25.S

1б 23.7 23.S 15.2 23.S 23.2 23.9 23.9 23.9 24.0 23.9 24.0 23.9 23.9

17 15.2 16.7 22.9 16.7 15.3 17.0 17.0 1б.9 16.9 17.0 1б.9 1б.9 16.8

1S 15.9 15.1 19.0 14.4 18.6 15.1 15.1 15.1 15.2 15.1 15.2 15.2 15.0

19 10.4 10.2 10.0 10.1 10.1 10.2 10.2 10.3 10.3 10.2 10.3 10.3 10.3

20 69.5 68.9 25.2 б9.4 69.4 б2.2 бб.4 б7.4 68.2 бб.9 бб.7 бб.5 б5.9

Compound / 8C (in ppm)

Carbon -

112 113 114 115 116 117 118 119 120 121 122 123

1 160.3 160.2 161.5 161.4 160.2 159.8 160.0 159.4 159.8 156.2 158.2 158.3

2 136.2 136.2 132.8 132.8 136.3 136.4 136.6 136.5 136.5 143.3 136.6 136.5

3 210.3 210.3 209.1 209.0 210.2 209.7 209.7 210.1 209.6 213.3 208.4 209.0

4 44.5 44.5 73.6 73.6 44.5 44.2 44.0 44.3 44.1 49.6 73.3 73.5

5 34.1 34.1 39.0 39.0 34.0 29.6 29.0 33.6 30.0 25.1 40.0 39.8

6 139.6 139.7 134.8 134.8 139.0 142.0 142.4 139.3 137.2 137.0 135.0 138.9

7 125.7 125.6 134.1 133.2 125.8 126.5 125.3 125.0 130.3 126.5 130.8 130.8

8 42.2 42.2 39.5 39.4 42.2 42.1 42.4 42.6 42.2 40.7 39.1 38.9

9 77.9 77.9 76.0 75.9 77.9 77.8 - 77.5 77.8 78.1 81.1 81.2

10 54.3 54.3 55.7 56.7 54.3 54.2 53.8 53.9 54.0 47.4 55.4 55.5

11 42.4 42.4 36.4 36.3 42.3 42.4 42.4 42.5 42.3 43.2 33.0 33.1

12 53.8 56.8 31.9 31.7 76.7 76.7 76.1 76.2 76.4 75.3 35.7 35.7

13 65.0 65.1 63.1 63.9 65.0 65.0 65.2 65.3 64.8 64.8 84.4 84.5

14 36.0 35.9 32.7 32.3 35.9 35.8 36.4 36.5 35.5 37.1 80.6 80.8

15 25.8 25.8 22.9 23.0 25.8 25.9 30.0 29.8 25.8 25.3 146.5 146.4

16 23.9 24.0 23.6 23.0 23.9 23.8 - 19.5 23.8 24.2 110.7 110.7

17 17.0 16.9 15.4 15.3 16.9 16.9 63.3 63.5 16.8 16.5 18.8 18.8

18 15.2 15.2 18.6 18.5 15.1 15.1 15.2 15.2 15.0 11.9 19.8 19.9

19 10.3 10.3 10.1 10.1 10.2 10.2 10.3 10.3 10.3 10.5 10.2 10.2

20 67.2 65.9 69.8 69.7 25.4 67.5 67.1 25.4 68.9 69.3 70.4 69.3

(-) Data not observed; *interchangeable.

Affected by the a,P-unsaturated y-lactone, the carbon chemical shifts of Me-17 is very low at Sc 6.7-10.0, as shown in 1-7, 12, 14-18, 21-23, 25 and 30-34. Thus, the assignment of the four methyl groups (C-17, C-18, C-19 and C-20) in compounds 19-20 and 26-29 [40,42] were doubtful. In their 13C-NMR spectra, chemical shifts around SC 8.0 should be assigned to C-17 instead of C-20, SC 27.034.0 should be assigned to C-18 instead of C-17, and SC 16.0-23.0 should be assigned to C-19 instead of C-18. Other positions, such as C-2, C-3, C-7, C-8, C-11 and C-14 are usually substituted by oxygen groups, whose carbon chemical shifts are around SC 65.0-78.0. Values close to SC115.0 can be assigned to tertiary carbon (C-14) on double bond in 15-29. Some carbons of the abietane diterpenoids (27, 28 and 30-36) may be carbonylated when their chemical shifts are above SC 185.0.

The carbon chemical shifts do not show very characteristic features for ingenane skeleton type. Their characteristic carbon chemical shifts are observed around SC 127.0-140.0 and 204.0-208.0, which are assigned to four carbons (C-1, C-2, C-6 and C-7) on two double bonds and the bridged carbonyl (C-9). The carbon chemical shift around SC 71.8-72.8 is assigned to the quaternary carbon (C-10) near the bridged carbonyl. The carbon chemical shifts around SC 74.0-86.0 (assigned to C-3, C-4 and C-5 with oxygen substituted) are registered in the 13C-NMR spectra of these compounds. Besides, there is another carbon (C-20) usually oxygen substituted, but it show little lower values (SC 62.3-67.2), while its value is around SC 21.6-21.8 without oxygen substitution, as the compounds 64, 65 and 68. The carbon chemical shifts of 65-79 show C-13 and C-17 are registered SC 65.5-69.1 after acylation.

The structures of tigliane diterpenes can be confirmed by carbon chemical shifts around Sc 203.0210.3, 156.2-160.6, 132.7-138.3, 132.9-142.9 and 125.0-158.2 assigned to C-3, C-1, C-2, C-6 and C-7, respectively (except 99 and 121). Values close to SC 73.0 and 77.0 are assigned to the carbons C-4 and C-9 substituted by hydroxyl groups. The carbon chemical shift of C-20 is at SC 193.8 when it is substituted by hydroxyl group (97 and 98), as well as the chemical shift of C-7 is obvious higher than other tigliane diterpenes because of conjugated effect. Compounds 99 and 121 are rare A/B cis-integrated compounds, and the structure of these isomers can be confirmed from the data of 13C-NMR, for the chemical shifts of C-2 and C-3 are 4-7 ppm higher than that of the A/B trans-integrated ones.

Acknowledgements

The authors thank National Natural Science Foundation of China (No.30672678, 30973940) and "Qinglan Project" Scientific and Technological Innovation Team Training Program of Jiangsu College and University for their financial support.

References and Notes

1. Jassbi, A.R. Chemistry and biological activity of secondary metabolites in Euphorbia from Iran. Phytochemistry 2006, 67, 1977-1984.

2. Hohmann, J.; Molnar, J. Euphorbiaceae diterpenes: Plant toxins or promising molecules for the therapy? Acta Pharm. Hung. 2004, 74, 149-157.

3. Ahmad, W.; Nazir, M.; Khan, S.A. The chemical composition of various Euphorbia species for industrial applications. Part II. Neutral lipids of Euphorbia cauducifolia. Pak. J. Sci. Res. 1988, 31, 85-89.

4. Duarte, N.; Gyemant, N.; Abreu, P.M.; Molnar, J.; Ferreira, M.J.U. New macrocyclic lathyrane diterpenes, from Euphorbia lagascae, as inhibitors of multidrug resistance of tumour cells. Planta Med. 2006, 72, 162-168.

5. Yan, S.S.; Li, Y.; Wang, Y.; Shen, S.S.; Gu, Y.; Wang, H.B.; Qin, G.W.; Yu, Q. 17-Acetoxyjolkinolide B irreversibly inhibits I-kappaB kinase and induces apoptosis of tumor cells. Mol. Cancer Ther. 2008, 7, 1523-1532.

6. Liu, W.K.; Ho, J.C.K.; Qin, G.W.; Che, C.T. Jolkinolide B induces neuroendocrine differentiation of human prostate LNCaP cancer cell line. Biochem. Pharmacol. 2002, 63, 951-957.

7. Luo, H.Y.; Wang, A.Q. Induction of apoptosis in K562 cells by jolkinolide B. Can. J. Physiol. Pharmacol. 2006, 84, 959-965.

8. Duarte, N.; Loge, H.; Ferreira, M.J.U. Antiproliferative activity of ent-abietane lactones against resistant human cancer cell lines. Planta Med. 2008, 74, 984-985.

9. Kigoshi, H.; Ichino,T.; Yamada, K.; Ijuin, Y.; Makita, S.F.; Uemura, D. Stereostructure and bioactivities of jolkinolide D. Chem. Lett. 2001, 6, 518-519.

10. Shi, Q.W.; Su, X.H.; Kiyota, H. Chemical and pharmacological research of the plants in genus Euphorbia. Chem. Rev. 2008, 108, 4295-4327.

11. Singla, A.K.; Pathak, K. Phytoconstituents of Euphorbia species. Fitoterapia 1990, 61, 483-516.

12. Appendino, G.; Szallasi, A. Euphorbium: Modern research on its active principle, resiniferatoxin, revives an ancient medicine. Life Sci. 1997, 60, 681-696.

13. Xu, Z.H.; Sun, J.; Xu, R.S.; Qin, G.W. Casbane diterpenoids from Euphorbia ebracteolata. Phytochemistry 1998, 49, 149-151.

14. Fatope, M.O.; Zeng, L.; Ohayaga, J.E.; Shi, G.; McLaughlin, J.L. Selectively cytotoxic diterpenes from Euphorbiapoisonii. J. Med. Chem. 1996, 39, 1005-1008.

15. Murugan, S.; Anand, R.; Uma-Devi, P.; Vidhya, N.; Rajesh, K.A. Efficacy of Euphorbia milli and Euphorbia pulcherrima on aflatoxin producing fungi (Aspergillus flavus and Aspergillus parasiticus). Afr. J. Biotechnol. 2007, 6, 718-719.

16. Ma, Q.G.; Liu, W.Z.; Wu, X.Y.; Zhou, T.X.; Qin, G.W. Chemical studies of Lang-Du, a traditional Chinese medicine. 1. Diterpenoids from Euphorbia fischeriana. Phytochemistry 1997, 44, 663-666.

17. Hezareh, M. Prostratin as a new therapeutic agent targeting HIV viral reservoirs. Drug News Perspect. 2005, 18, 496-500.

18. Betancur-Galvis, L.; Palomares, E.; Marco, J.A.; Estornell, E. Tigliane diterpenes from the latex of Euphorbia obtusifolia with inhibitory activity on the mammalian mitochondrial respiratory chain. J. Ethnopharmacol. 2003, 85, 279-282.

19. Singh, A.; Agarwal, R.A. Possibility of using latex of euphorbiales for snail control. Sci. Total Environ. 1988, 77, 231-236.

20. Vogg, G.; Mattes, E.; Rothenburger, J.; Hertkorn, N.; Stefan, A.; Sandermann, J.H. Tumor promoting diterpenes from Euphorbia leuconeura L. Phytochemistry 1999, 51, 289-295.

21. Baloch, I.B.; Baloch, M.K.; Saqib, Q.N. Tumor-Promoting Diterpene Esters from Latex of Euphorbia cauducifolia L. Helv. Chim. Acta. 2005, 88, 3145-3150.

22. Kedei, N.; Lundberg, D.J.; Toth, A.; Welburn, P.; Garfield, S.H.; Blumberg, P.M. Characterization of the Interaction of Ingenol 3-Angelate with Protein Kinase C. Cancer Res. 2004, 64, 3243-3255.

23. Cateni, F.; Falsone, G.; Zilic, J. Terpenoids and glycolipids from Euphorbiaceae. Mini-Rev. Med. Chem. 2003, 3, 425-437.

24. Zayed, S.; Farghaly, M.; Soliman, S.M.; Gotta, H.; Sorg, B.; Hecker, E. Dietary cancer risk from conditional cancerogens (tumor promoters) in produce of livestock fed on species of spurge (Euphorbiaceae) V. Skin irritant and tumor-promoting diterpene ester toxins of the tigliane and ingenane type in the herbs Euphorbia nubica and Euphorbia helioscopia contaminating fodder of livestock. J. Cancer Res. Clin. Oncol. 2001, 127, 40-47.

25. Shi, H.M.; Williams, I.D.; Sung, H.H.Y.; Zhu, H.X.; Ip, N.Y.; Min, Z D. Cytotoxic diterpenoids from the roots of Euphorbia ebracteolata. Planta Med. 2005, 71, 349-354.

26. Ferreira, M.U.; Gyémánt, N.; Madureira, A.M.; Molnár, J. Inhibition of P-glycoprotein transport activity in a resistant mouse lymphoma cell line by diterpenic lactones. Anticancer Res. 2005, 25, 3259-3262.

27. Marco, J.A.; Sanz-Cervera, J.F.; Yuste, A.; Jakupovic, J. Isoterracinolides A and B, novel bishomoditerpene lactones from Euphorbia terracina. J. Nat. Prod. 1999, 62, 110-113.

28. Wang, H.; Zhang, X.F.; Cai, X.H.; Ma, Y.B.; Luo, X.D. Three new diterpenoids from Euphorbia wallichii. Chin. J. Chem. 2004, 22, 199-202.

29. Pan, Q.; Shi, M.F.; Min, ZD. Studies on the 2D NMR spectra of Jolkinolide diterpenoids from Euphorbiafischriana. J. Chin. Pharm. Univ. 2004, 35, 16-19.

30. Sutthivaiyakit, S.; Thapsut, M.; Prachayasittikul, V. Constituents and bioactivity of the tubers of Euphorbia sessiliflora. Phytochemistry 2000, 53, 947-950.

31. Wang, Y.B.; Huang, R.; Wang, H.B.; Jin, H.Z.; Lou, L.G.; Qin, G.W. Diterpenoids from the roots of Euphorbia fischeriana. J. Nat. Prod. 2006, 69, 967-970.

32. Che, C.T.; Zhou, T.X.; Ma, Q.G.; Qin, G.W.; Williams, I.D.; Wu, H.M.; Shi, Z.S. Diterpenes and aromatic compounds from Euphorbia fischeriana. Phytochemistry 1999, 52, 117-21.

33. Lal, A.R.; Cambie, R.C.; Rutledge, P.S.; Woodgate, P.D. Chemistry of fijian plants. 6. Ent-pimarane and ent-abietane diterpenes from Euphorbia fidjiana. Phytochemistry 1990, 29, 2239-2246.

34. Haba, H.; Lavaud, C.; Marcourt, L.; Long, C.; Harkat, H.; Benkhaled, M. Ent-abietane diterpenoids from Euphorbia guyoniana Boiss. & Reut. Biochem. Syst. Ecol. in press.

35. Jeske, F.; Jakupovic, J.; Berendsohn, W. Diterpenes from Euphorbia seguieriana. Phytochemistry 1995, 40, 1743-1750.

36. Appendino, G.; Belloro, E.; Cesare-Tron, G.; Jakupovic, J.; Ballero, M. Polycyclic diterpenoids from Euphorbia characias. Fitoterapia 2000, 71, 134-142.

37. Valente, C.; Pedro, M.; Duarte, A.; Nascimento, M.S.J.; Abreu, P.M.; Ferreira, M.J.U. Bioactive diterpenoids, a new jatrophane and two ent-abietanes, and other constituents from Euphorbia pubescens. J. Nat. Prod. 2004, 67, 902-904.

38. Appendino, G.; Jakupovic, S.; Tron, G.C.; Jakupovic, J.; Milon, V.; Ballero, M. Macrocyclic diterpenoids from Euphorbia semiperfoliata. J. Nat. Prod. 1998, 61, 749-756.

39. Shizuri, Y.; Kosemura, S.; Yamamura, S.; Ohba, S.; Ito, M.; Saito, Y. Isolation and structures of helioscopinolides, new diterpenes from Euphorbia helioscopia L. Chem. Lett. 1983, 12, 65-68.

40. Crespi-Perellino, N.; Garofano, L.; Arlandini, E.; Pinciroli, V.; Minghetti, A.; Vincieri, F.F.; Danieli, B. Identification of new diterpenoids from Euphorbia calyptrata cell cultures. J. Nat. Prod. 1996, 59, 773-776.

41. Zhang, W.; Guo, Y.W. Chemical Studies on the constituents of the Chinese medicinal herb Euphorbia helioscopia L. Chem. Pharm. Bull. 2006, 54, 1037-1039.

42. Borghi, D.; Baumer, L.; Ballabio, M.; Arlandini, E.; Perellino, N.C.; Minghetti, A.; Vincieri, F.F. Structure elucidation of helioscopinolides D and E from Euphorbia calyptrata cell cultures. J. Nat. Prod. 2004, 54, 1503-1508.

43. Haba, H.; Lavaud, C.; Magid, A.A.; Benkhaled, M. Diterpenoids and triterpenoids from Euphorbia retusa. J. Nat. Prod. 2009, 72, 1258-1264.

44. Morgenstern, T.; Bittner, M.; Silva, M.; Aqueveque, P.; Jakupovic, J. Diterpenes and phloracetophenones from Euphorbiaportulacoides. Phytochemistry 1996, 41, 1149-1153.

45. Shi, J.S.; Li, Z.X.; Nitoda, T.; Minoru, I.; Hiroshi, K.; Naomichi, B.; Kazuyoshi, K.; Shuhei, N. Antinematodal activities of ingenane diterpenes from Euphorbia kansui and their derivatives against the pine wood nematode. Z. Naturforsch., C: Biosci. 2008, 63, 59-65.

46. Shi, J.X.; Li, Z.X.; Izumi, M.; Baba, N.; Nakajima, S. Termiticidal activity of diterpenes from the roots of Euphorbia kansui. Z. Naturforsch., C: Biosci. 2008, 63, 51-58.

47. Matsumoto, T.; Cyong, J.C.; Yamada, H. Stimulatory effects of ingenols from Euphorbia kansui on the expression of macrophage Fc receptor. Planta Med. 1992, 58, 255-258.

48. Sayed, M.D.; Riszk, A.; Hammouda, F.M.; Elmissiry, M.M.; Williamson, E.M.; Evans, F.J. Constituents of Egyptian Euphorbiaceae. 9. Irritant and cyto-toxic ingenane esters from Euphorbiaparalias L. Experientia 1980, 36, 1206-1207.

49. Marston, A.; Hecker, E. On the active principles of the Euphorbiaceae. 6. Isolation and biological-activities of seven milliamines from Euphorbia milii. Planta Med. 1983, 47, 141-147.

50. Wang, L.Y.; Wang, N.L.; Yao, X.S.; Miyata, S.; Kitanaka, S. Studies on the bioactive constituents in Euphorbiaceae, part 3. Diterpenes from the roots of Euphorbia kansui and their in vitro effects on the cell division of Xenopus. Chem. Pharm. Bull. 2003, 51, 935-941.

51. Sorg, B.; Schmidt, R.; Hecker, E. Structure activity relationships of polyfunctional diterpenes of the ingenane type. I. Tumor-promoting activity of homologous, aliphatic 3-esters of ingenol and of A7,8-isoingenol-3-tetradecanoate. Carcinogenesis 1987, 8, 1-4.

52. Oksuz, S.; Ulubelen, A.; Barla, A.; Kohlbau, H.J.; Voelter, W. Triterpenoids and a diterpene from Euphorbia iberica. Planta Med. 1999, 65, 475-477.

53. Connoly, J.D.; Facunle, C.O.; Rycroft, D.S. Five ingol esters and a 17-hydroxyingenol ester from the latex of Euphorbia kamerunica. Assignment of esters using 13C-NMR. methods. Tetrahedron Lett. 1984, 25, 3773-3776.

54. Urones, J.G.; Barcala, P.B.; Cuadrado, M.J.S.; Marcos, I.S. Diterpenes from the Latex of Euphorbia broteri. Phytochemistry 1988, 27, 207-212.

55. Tada, M.; Seki, H. Toxic diterpernes from Euphorbia trigona (Saiunkaku: an indoor foliage plant in Japan). Agric. Biol. Chem. 1989, 53, 425-430.

56. Shi, Y.P.; Jia, Z.J.; Ma, B.; Saleh, S.D.; Lahham, J. Ingenane diterpenes from Euphorbia petiolata. Planta Med. 1996, 62, 260-262.

57. Shi, J.G.; Jia, Z.J.; Yang, L. Lathyrane and ingenane diterpenoids from Euphorbia micractina. Planta Med. 1994, 60, 588-589.

58. Lu, Z.Q.; Yang, M.; Zhang, J.Q.; Chen, G.T.; Huang, H.L.; Guan, S.H.; Ma, C.; Liu, X.; Guo, D.A. Ingenane diterpenoids from Euphorbia esula. Phytochemistry 2008, 69, 812-819.

59. Marco, J.A.; Sanz-Cervera, J.F.; Yuste, A. Ingenane and lathyrane diterpenes from the latex of Euphorbia canariensis. Phytochemistry 1997, 45, 563-570.

60. Marco, J.A.; Sanz-Cervera, J.F.; Ropero, F.J.; Checa, J.; Fraga, B.M. Ingenane and lathyrane diterpenes from the latex of Euphorbia acrurensis. Phytochemistry 1998, 49, 1095-1099.

61. Ott, H.H.; Hecker, E. Highly irritant ingenane type diterpene esters from Euphorbia cyparissias L. Experientia 1981, 37, 88-91.

62. Wu, D.G.; Sorg, B.; Hecker, E. Oligocyclic and macrocyclic diterpenes in thymelaeaceae and Euphorbiaceae occurring and utilized in Yunnan (Southwest China). 6. Tigliane type diterpene esters from latex of Euphorbiaprolifera. Phytother. Res. 1994, 8, 95-99.

63. Marston, A.; Hecker, E. Active principles of the Euphorbiaceae. 7. Milliamine H and milliamine I, peptide esters of 20-deoxy-5^-hydroxyphorbol from Euphorbia milii. Planta Med. 1984, 50, 319-322.

64. Wu, D.G.; Sorg, B.; Adolf W.; Seip, E.H.; Hecker, E. Oligo- and macrocyclic diterpenes in thymelaeaceae and Euphorbiaceae occurring and utilized in Yunnan (Southwest China). 2.

Ingenane type diterpene esters from Euphorbia nematocypha Hand.-Mazz. Phytother. Res. 1992, 6, 237-240.

65. Furstenberger, G.; Hecker, E. On the active principles of the Euphorbiaceae, XII. Highly unsaturated irritant diterpene esters from Euphorbia tirucalli originating from Madagascar. J. Nat. Prod. 1986, 49, 386-397.

66. Liu, W.Z.; Wu, X.Y.; Yang, G.J.; Ma, Q.G.; Zhou, T.X.; Tang, X.C.; Qin, G.W. 12-deoxyphorbol esters from Euphorbia fischeriana. Chin. Chem. Lett. 1996, 7, 917-918.

67. Haba, H.; Lavaud, C.; Harkat, H.; Alabdul-Magid, A.; Marcourt, L.; Benkhaled, M. Diterpenoids and triterpenoids from Euphorbia guyoniana. Phytochemistry 2007, 68, 1255-1260.

68. Appendino, G.; Belloro, E.; Tron, G.C.; Jakupovic J, Ballero M. Diterpenoids from Euphorbia pithyusa subsp. cupanii. J. Nat. Prod. 1999, 62, 1399-1404.

69. Baloch, I.B.; Baloch, M.K.; Saqib, Q. Anti-tumor 12-deoxyphorbol esters from Euphorbia cornigera. Eur. J. Med. Chem. 2008, 43, 274-281.

70. Marco, J.A.; Sanz-Cervera, J.F.; Checa, J.; Palomares, E.; Fraga, B.M. Jatrophane and tigliane diterpenes from the latex of Euphorbia obtusifolia. Phytochemistry 1999, 52, 479-485.

Sample Availability: Samples of the compounds 8, 12, 61 and 94 are available from the authors.

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).