Real-time Photovoltaic Simulator using Current Feedback Control

Wanchai Subsingha*

Rajamangala University of Technology Thanyaburi 39 Moo 1, Rangsit-Nakhonnayok Rd. Klong 6, Thanyaburi Pathum Thani 12110, Thailand

Abstract

In this proposal article, mathematical model of Photovoltaic model is investigated the relationship of the Photovoltaic’s irradiance, temperature and parameters comparing to its output power. It leads into an analyzing and developing of the Photovoltaic Simulator. By which, Photovoltaic simulator is utilized by the DC converter circuit with a current feedback control. This may be useful if is possible to implementing into a real world Photovoltaic simulator. In this paper, Photovoltaic simulator is modeled using MATLAB/Simulink program, which is composed of DC converter and a proper control scheme. It can be observed from the simulation results that I-V relationship of the Photovoltaic simulator is quite the same as of such Photovoltaic mathematical model. This means that, it is possible to build a real Photovoltaic simulator in commercial in a further work.

© 2016 The Authors. Published by Elsevier Ltd.

Keywords: Photovoltaic model; Photovoltaic simulator; DC Converter; Feedback control

1. Introduction

Generally, Photovoltaic cell converts photons into electric potential from its PN junction [1]. Nowadays, it is worldwide renewable energy source because of their energy-friendly environment [2]. However, its high costs may cause the difficulties in development and experiments for laboratory. Mean by that, practical Photovoltaic simulator

* Corresponding author. Tel.: +662-549-3420; fax: +662-549-3422
E-mail address: wanchai.s@en.rmutt.ac.th
which emulates output characteristics of Photovoltaic module through a real converter circuit can be used in replacement of an actual Photovoltaic module in laboratory scale.

2. Photovoltaic Model

2.1. Mathematical model

The equivalent circuit of Photovoltaic is shown in Figure 1. When Photovoltaic cell is exposed to sunlight, an electrical current will flows proportional to the solar irradiance [3].

\[I = I_{ph} - I_S \left\{ e^{\left(\frac{V + IR_S}{NKT}\right)} - 1 \right\} - \frac{(V - IR_S)}{R_{sh}} \]

(1)

\[I_{ph} = \left(I_{SC} + K_I \cdot (T - T_{ref}) \right) \lambda \]

(2)

\[I_S(t) = I_S \cdot \left(\frac{T}{T_{ref}} \right)^{3.6} \cdot e^{\left(\frac{T - T_{ref}}{NVT} \right)} \]

(3)

Where \(I_{ph} \) is photon current, \(R_s \), \(R_{sh} \) are series and shunt resistance, \(N \) is ideal diode factor, \(K \) is Boltzman constant, \(q \) is electron charge and \(I_s \) is saturation current of diode, \(K_I \) is short-circuit current temperature coefficient of Photovoltaic cell, \(I_c \) is short circuit (SC) current of cell, \(\lambda \) is solar irradiance, \(E_g \) is energy in band gap of semiconductor and \(V_t \) is ambient temperature voltage. By consideration, The behavior of Photovoltaic cell is the relation of \(N, I_{ph}, I_s, R_s \) and \(R_{sh} \). In which, these parameter depend on solar irradiance (\(\lambda \)) and temperature (\(T \)) [1].

However, Photovoltaic module is a congregation of Photovoltaic cells. So, V-I relationship of Photovoltaic module (neglecting \(R_s, R_{sh} \)) is given in (4) [1], where \(n_s \) and \(n_p \) are number of series and shunt cells in Photovoltaic module.

\[I = n_p I_{ph} - n_p I_S \left\{ e^{\left(\frac{qV}{NKT \cdot n_s} \right)} - 1 \right\} \]

(4)
• **Fill factor (FF):** SC current and OC (open circuit) voltage, which are maximum current and voltage of Photovoltaic cell. By theory, the product of these values is the maximum power of Photovoltaic cell [3]. FF is defined as the ratio of actual maximum obtainable power, $(V_m I_m)$ to the theoretical power, $(I_{oc} V_{oc})$. It is given as [3].

$$FF = \frac{V_m I_m}{V_{oc} I_{sc}}$$

(5)

• **Maximum efficiency (η):** is the ratio of maximum output power to the input power [4].

$$\eta = \frac{V_{oc} I_{sc} FF}{P_{in}}$$

(6)

3. Simulation Model of Photovoltaic Module

3.1. Mathematical model

The Solarex MSX60 Photovoltaic module was chosen to do a Photovoltaic model. It provides 60 W. of nominal max. power, and it has 36 polycrystalline silicon cells in series connecting. The specifications are shown in Table 1 [5].

<table>
<thead>
<tr>
<th>Specification of Solarex MSX60 (1kW/m², 25°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
</tr>
<tr>
<td>Typical peak power (P_m)</td>
</tr>
<tr>
<td>Peak power voltage (V_m)</td>
</tr>
<tr>
<td>Peak power current (I_m)</td>
</tr>
<tr>
<td>Current at short-circuit (I_{sc})</td>
</tr>
<tr>
<td>Voltage at open-circuit (V_{oc})</td>
</tr>
<tr>
<td>Coefficient temp. of OC voltage (β)</td>
</tr>
<tr>
<td>Coefficient temp. of SC current (α)</td>
</tr>
<tr>
<td>Approx. power by temp.</td>
</tr>
</tbody>
</table>
The model of the Photovoltaic module was implemented using MATLAB/Simulink program. Parameters of model are evaluated using equations on the previous section. The current and voltage were calculated from typical parameters of the module: $I_{sc}=3.8\,\text{A}$, $V_{oc}=21.1\,\text{V}$, $\beta=3\,\text{mA/}^\circ\text{C}$, $\alpha=-73\,\text{mV/}^\circ\text{C}$, $N=1.2$, $I_s=100\,\text{nA}$ and the variations of irradiation (λ) and temperature (T). The Photovoltaic model is shown in Figure 2.

3.2. Simulation results of Photovoltaic Cell and Module

3.2.1 Photovoltaic Cell

![I-V Characteristic of Photovoltaic cell correspond on I_s](image)
Figure 3(a) shows I-V curve of photovoltaic cell for the reverse saturation current of diode (I_s) at 100nA, 1μA, and 10μA. It is seen that the increasing of I_s is affected on the decreasing of V_{OC} (open circuit voltage). Figure 3(b) shows I-V curve of photovoltaic cell for the ideal factor (N) at 1.0, 1.5 and 2.0. It can be observed that the increasing of N is affected on the increasing of V_{OC}.

Figure 4(a) shows I-V curve of photovoltaic cell for the values of R_s at 1mΩ, 0.01Ω and 1Ω. It is seen that increasing of R_s is affected on decreasing of Fill factor (FF). Shunt resistance R_{sh} relates with shunt leakage current inversely. In general, the efficiency of photovoltaic is insensitive to the R_{sh}. That can be assumed that it will approach to infinity without leakage current [7].
From figure 5(a) and 5(b), it found that increasing of working temperature, I_{SC} will increases. In another ways, increasing output current will leads to decreasing of Photovoltaic output voltage, which Photovoltaic output power always decreases at higher temperature. On the other hand, from Fig.5, the increasing of solar irradiance, I_{SC} of Photovoltaic will be increased, and the maximum output power may increase. This means that open-circuit voltage depends on solar irradiance, and short-circuit current is proportional to radiant intensity directly.
3.2.2 Photovoltaic Module

In Photovoltaic module, only one path for conduction current due to Photovoltaic cells that connected in series is available, therefore \(n_p = 1 \). The Photovoltaic cell’s member that connected in series is 36, hence \(n_s \) is 36. Therefore, the simulation result of I-V and P-V curve of Photovoltaic module are shown in Figure 6(a) and 6(b) respectively.

Table 3 shows the comparison between the simulation result of Photovoltaic module model and its electrical characteristics (Solarex MSX60). It found that the error is acceptable and the simulation result of I-V and P-V curve of a Photovoltaic module are shown in Figure, 7.
Fig. 7 Simulation result of the I-V and P-V Characteristic of Photovoltaic Module

Table 2. Error of the Photovoltaic Module modeling.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Real MSX-60</th>
<th>MSX-60 Model</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_m (W)</td>
<td>60.0</td>
<td>60.47</td>
<td>0.78%</td>
</tr>
<tr>
<td>V_m (V)</td>
<td>17.1</td>
<td>17.08</td>
<td>0.12%</td>
</tr>
<tr>
<td>I_m (A)</td>
<td>3.5</td>
<td>3.48</td>
<td>0.57%</td>
</tr>
</tbody>
</table>

4. Simulation of the Photovoltaic Simulator

4.1. Simulation Model

In this paper, a PV simulator which emulates the output characteristics of the photo-voltaic modules can be used in order to the replacement of a real Solarex MSX60 [6]. The PV simulator is consists of a DC buck converter and a
controller which is using a DSP board implementation. A current transducer (CT) was used to detect the output Photovoltaic module’s current and then sent back to the DSP controller board in order to calculate PWM triggering signal for IGBT of the DC converter.

In the further works, real time hardware has to be accomplished in order to produce external output aspect following the I-V characteristics of such Photovoltaic modules. However, in this paper, Photovoltaic simulator is modeled using MATLAB/Simulink program. By which, Photovoltaic simulator that consisted of DC buck converter and a proper feedback control scheme as shown in Figure 9.

![Fig. 9. DC Buck Converter and a PID feedback control scheme](image)

4.2. Simulation Results

![Fig. 9. I-V Characteristic of the Photovoltaic Module under different solar irradiance (T=25°C) compared with the Photovoltaic Simulator (DC Converter Based)](image)
The output voltage of the Photovoltaic simulator (DC converter based) in this article is designed to be adjusted from 7V to 22V. The experiment test of PV simulator is done by adjusting the load resistor (R_{load}), in which, it may change the value of resistor from 2Ω to 49Ω. Figure 9 shows I-V curve of the Photovoltaic module under different solar irradiance 25°C compared to the Photovoltaic based DC-DC Converter. The comparison of P-V curve from the mathematical model of the Photovoltaic Simulator and the Photovoltaic model is also depicted in Figure 10. It show that I-V curve of the Photovoltaic simulator (DC converter based) is well matching with the Photovoltaic module except the small part of voltage control zone of Photovoltaic experimental curve need to be adjustment to the I-V curve with particularly in both different solar irradiance and the temperature are same.

5. Conclusions

At first part, the computer simulation is done using a Solarex MSX60 parameters in order to depict the output characteristics of such Photovoltaic cell in any operating circumstances such as a vary of sunshine intensity or working temperature etc. The results of the simulation confirmed that it is suited to the real Solarex MSX60. On the second part, the computer simulation is also done, but, in form of the Photovoltaic simulator. The Photovoltaic simulator in this article consists of a buck converter and a digital controller. From the simulation results, it shows that the output characteristic of Photovoltaic simulator has a well matching with a real Solarex MSX60. However, in practice, it needs to be adjusted at some part of the voltage control in the digital controller.

References