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Abstract

Background: Genomic selection and estimation of genomic breeding values (GBV) are widely used in cattle and
plant breeding. Several studies have attempted to detect population subdivision by investigating the structure of
the genomic relationship matrix G. However, the question of how these effects influence GBV estimation using
genomic best linear unbiased prediction (GBLUP) has received little attention.

Methods: We propose a simple method to decompose G into two independent covariance matrices, one
describing the covariance that results from systematic differences in allele frequencies between groups at the
pedigree base (GA

* ) and the other describing genomic relationships (GS) corrected for these differences. Using
this decomposition and Fst statistics, we examined whether observed genetic distances between genotyped
subgroups within populations resulted from the heterogeneous genetic structure present at the base of the
pedigree and/or from breed divergence. Using this decomposition, we tested three models in a forward
prediction validation scenario on six traits using Brown Swiss and dual-purpose Fleckvieh cattle data. Model 0
(M0) used both components and is equivalent to the model using the standard G-matrix. Model 1 (M1) used
GS only and model 2 (M2), an extension of M1, included a fixed genetic group effect. Moreover, we analyzed
the matrix of contributions of each base group (Q) and estimated the effects and prediction errors of each base
group using M0 and M1.

Results: The proposed decomposition of G helped to examine the relative importance of the effects of base
groups and segregation in a given population. We found significant differences between the effects of base
groups for each breed. In forward prediction, differences between models in terms of validation reliability of
estimated direct genomic values were small but predictive power was consistently lowest for M1. The relative
advantage of M0 or M2 in prediction depended on breed, trait and genetic composition of the validation
group. Our approach presents a general analogy with the use of genetic groups in conventional animal models
and provides proof that standard GBLUP using G yields solutions equivalent to M0, where base groups are
considered as correlated random effects within the additive genetic variance assigned to the genetic base.
Background
Genomic selection [1] and estimation of genomic
breeding values (GBV) are currently used for many
cattle populations. Genomic best linear unbiased
prediction (GBLUP) using relationships estimated
based on SNPs (single nucleotide polymorphisms) has
been established as one of the most prominent methods
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for practical applications [2]. The question of how and
to what extent population subdivision affects the
genomic relationship matrix and genomic predictions
was not addressed until applications of GBLUP across
breeds or in admixed or crossbred populations were
proposed e.g. [3–5]. However, several authors have
shown that genomic relationship matrices can be used
to detect population subdivision and to calculate
measures of genetic distances (e.g. Fst) [6, 7].
Conventional methods to estimate breeding values
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an arbitrarily defined base population. Members of
this base population are assumed to come from a
single population with a mean breeding value of 0 and
variance σa

2. Since this is rarely true in practical
applications, many conventional methods to estimate
breeding values include genetic groups or phantom
parents [8–10] in the model. A more elaborated
approach in the context of multi-breed evaluations
was proposed by García-Cortés and Toro [11], who
partitioned the elements of the covariance matrix of
the additive values into a breed-source term and a
segregation term.
In spite of the large number of studies that deal with

the use of genetic groups in conventional models, only a
few have investigated this issue within the framework of
genomic models. Makgahlela et al. [12–14] tested
models that accounted for breed effects and compared
allele frequencies in subgroups of Nordic Red cattle.
They showed that a model that included a fixed breed
effect [12, 13] increased the reliability of direct genomic
values (DGV) by 2 to 3 % [13] for an admixed Nordic
Red population. In a follow-up investigation, they found
that using breed- or subpopulation-specific allele fre-
quencies to calculate the genomic relationship matrix
(G) did not result in higher validation reliabilities,
although accounting for specific allele frequencies in the
calculation of G changed the estimated GBV of some
individuals considerably [14]. Tsuruta et al. [15] pro-
posed an approach to assign unknown parent groups in
one-step GBLUP for US Holstein cattle data. Their
approach can be described as an application of the
model that fits standard fixed genetic groups within the
context of one-step GBLUP. The question of whether
and how population subdivision influences the G-matrix
was not addressed.
A simulation study by Vitezica et al. [16] compared

five BLUP methods and investigated the effect of selec-
tion and genome-wide evaluation methods (one-step
and multi-step) on bias and accuracy of genomic predic-
tions. They examined the problem of unequal genetic
levels between genotyped and non-genotyped animals in
the one-step GBLUP procedure, where the genomic rela-
tionship matrix G and the pedigree-based relationship
matrix A are combined. They proposed a correction of
G and concluded that one-step estimation with a
corrected G results in unbiased estimates of GBV, which
have a similar inflation rate and a higher accuracy than
estimates obtained with other methods. Christensen
[17] presented an alternative approach for one-step
models. For admixed populations, he suggested that the
pedigree-based relationship matrix should be adjusted
by assuming a parametric structure for the relationships
between animals in the base population and estimating
those parameters. He argued that this approach would be
easier to extend and simpler than developing an ap-
propriate method of adjusting the matrix of genomic
relationships of genotyped animals across breeds.
The effects of population subdivision on the structure

of the genomic relationship matrix G have also been
investigated in contexts other than when it is used to
estimate GBV. There are numerous studies on the calcu-
lation of Fst statistics [6, 18] and principal component
analysis (PCA), e.g. [19, 20], and corresponding exten-
sions to the G-matrix [16]. These studies show that it is
possible to detect population subdivision with G in the
same manner as with A. This means that G includes in-
formation about population subdivision and that, in
some cases, this information includes the genetic dis-
tance between potentially discriminable groups in the
base population that is defined by the pedigree. Since
base animals are rarely genotyped, these distances can-
not be estimated directly. A simple and straightforward
method to estimate allele frequencies in the base popula-
tion was proposed by Gengler et al. [21] and is based on
a mixed model approach. In this paper, we estimate
allele frequencies in the base of different subpopulations
that are present in our datasets and propose a method
to separate the genomic relationship matrix (G) into two
independent components: a base group (GA

* ) component
and a segregation (GS) component. Furthermore, we
demonstrate that this decomposition leads to basically
identical results as ordinary GBLUP. Finally, we exam-
ine models that either ignore the effects of base groups
or that consider base groups as fixed effects.

Methods
Material
In total, 7965 genotyped Fleckvieh (FV) and 4257 ge-
notyped Brown Swiss (BS) and 143 genotyped Original
Braunvieh (OB) bulls were available for this study. BS
and OB data were combined (hereafter called BS/OB,
n = 4400) into a single dataset because these two sub-
populations actually originated from a single breed.
The term Brown Swiss is used to denote the modern
Braunvieh, which resulted from an exchange of genetic
material between Europe and North America. An OB
animal is genetically characterized as a descendant of
the old European Braunvieh population, with no or
only minor genetic contributions from the reimported
US Brown Swiss population. This labelling of OB
animals within the European Braunvieh population is
not necessarily applied in a uniform manner and small
differences in the definition can occur between countries.
All animals were genotyped with the Illumina

BovineSNP50 BeadChip (Illumina, San Diego, CA). After
removing SNPs with low call rates (<90 %), minor allele
frequencies less than 2 %, or with a deviation from Hardy-
Weinberg equilibrium with P < 10−5, 37 718 and 41 254



Plieschke et al. Genetics Selection Evolution  (2015) 47:53 Page 3 of 14
SNPs were retained for the BS/OB and FV datasets,
respectively. Available pedigrees for genotyped animals in-
cluded 7802 and 16 357 records for the BS/OB and FV
breeds, respectively. BS/OB base animals were assigned to
nine groups (Table 1) according to origin and date of
birth. Since the genetic distances between German,
Austrian, Italian and Swiss BS base animals born before
1960 were small (results not shown), they were combined
into one base group called EUb. Base FV animals were
assigned to 11 groups with nine groups assigned accord-
ing to origin and date of birth and two groups assigned to
the Red Holstein breed (Table 2).
We estimated DGV for three milk traits and three

conformation traits from a dataset that was reduced for
the last four years of phenotypic data (referred to as the
reduced dataset). Daughter yield deviations (DYD) from
the German-Austrian system [22] were used for FV bulls
and deregressed MACE (multi-trait across country
evaluations) proofs from Interbull [23] for BS/OB bulls.
Deregression was done using the method proposed by
Garrick et al. [24]. Group effects were not accounted for
in the deregression. Traits analyzed were milk yield
(MY), protein yield (PY), fat yield (FY), stature (STA),
feet and legs (FL) and udder conformation (UD). These
traits were a priori assumed to have a large genetic trend
and/or to show considerable differences between base
groups. DGV estimated from the reduced dataset were
then compared to DYD and deregressed proofs from the
corresponding April 2014 evaluations (current dataset)
according to the guidelines of the Interbull GEBV test
[25, 26]. In short, the validation group included bulls
with no information on the offspring’s performances in
the reduced dataset but corresponding information in
the current dataset. Current information was assumed to
be sufficient for the test when the effective daughter
contribution (EDC) [27] based on offspring perfor-
mances was equal to at least 20. The remaining bulls
from 2010 with an EDC of at least 1 were included into
the training set (Calib).
Technically, we tested DGV by a weighted regression

of current DYD or deregressed proofs of the animals in
the validation group on their DGV estimated from the
reduced set. The resulting test statistics are the intercept
and slope (b) of this regression as measures of bias and
the coefficient of determination (R2) of this regression as
Table 1 Number of animals per defined base group for the BS/OB p

EUb DEb ATb CHb

Year ≤1960 >1960 >1960 >1960

Number 2093 1482 743 1281

BS = Brown Swiss and OB = Original Braunvieh, assignment was done by country a
considered across countries: EUb = European base group (born before 1960), DEb =
1960), CHb = Swiss base group (born after 1960), ITb = Italian base group (born afte
group (born after 1955), OBb1 = Original Braunvieh base group (born before 1960),
a measure of the reliability of the DGV. The R2 values
were corrected for the uncertainty in DYD, as proposed
by [28], i.e. they were divided by the average reliability of
the DYD of validation bulls.
For presentation of results, we divided the animals of

the validation group into different sub-groups. FV
validation animals were assigned to two groups: animals
from Germany-Austria (DEA) and others. BS validation
animals were also divided into DEA and others, and OB
validation animals were assigned to a third validation
group (OB). Numbers of animals included in each
validation group are in Table 3. The assignments of
validation animals to origins used in this investigation
for the purpose of illustration were mainly based on ISO
country codes [29] and do not necessarily correspond to
assignments based on analyses of genetic contributions
from base groups.

Decomposition of G
Assume a common scenario in genomic prediction with
n animals genotyped for m biallelic SNPs. Information
on genotypes is collected in an n x m matrix C, using
numerical coding that denotes the number of copies of
the arbitrarily defined reference allele (0, 1, 2). Let pT
be the vector of estimated allele frequencies at the m
SNPs, which for each SNP j were derived from geno-
typed animals.

p̂j ¼
Xn

i¼1
Cij

2n
ð1Þ

A genomic relationship matrix GT can be calculated and
used in GBLUP using these “current” allele frequencies as:

GT ¼ MM0Xm

j¼1
2p̂j 1‐p̂j

� � ; ð2Þ

where M is an n x m matrix of recoded genotypes, for
which each row (= animal) i of the matrix of numerically
coded genotypes C is manipulated in the following
manner [30]:

Mi ¼ Ci ‐1‐ 2 pT‐ 0:5ð Þ: ð3Þ
Conceptually, this manipulation is equivalent to

column-wise centering of C if current allele frequencies
opulation

ITb USb1 USb2 OBb1 OBb2

>1960 ≤1955 >1955 ≤1960 >1960

413 489 445 458 398

nd year of birth with the exception of the OB base groups, which were
German base group (born after 1960), ATb = Austrian base group (born after
r 1960), USb1 = American base group (born before 1955), USb2 = American base
OBb2 = Original Braunvieh base group (born after 1960)



Table 2 Number of animals per defined base group for FV

DEb1 DEb2 DEb3 DEb4 HOLb1 HOLb2 ATb CZb CHb FRb Divb

Year <1960 ≥1960 < 1970 ≥1970 < 1980 ≥1980 <1960 ≥1960 All All All All All

Number 1368 6055 1661 773 528 427 3452 977 183 228 705

FV = Fleckvieh; assignment was done by country and year of birth with the exception of the Red Holstein and the diverse base groups, which were considered across
countries: DEb1 = German base group (born before 1960), DEb2 = German base group (born between 1960 and 1970), DEb3 = German base group (born between 1970
and 1980), DEb4 = German base group (born after 1980), HOLb1 = Red Holstein base group (born before 1960), HOLb2 = Red Holstein base group (born after 1960),
ATb = Austrian base group, CZb = Czech base group, CHb = Swiss base group, FRb = French base group, DIVb = base groups with animals with other countries of origin
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are used and if each marker is in Hardy-Weinberg equi-
librium in the genotyped population.
Assume a subdivision of the genotyped population

into g groups that systematically differ in allele frequen-
cies, as indicated for example by sufficiently high Fst
values [31, 32]. Define a g x m matrix P of group-
specific allele frequencies that are derived by applying
Equation (1) within each group. Using these group-
specific allele frequencies, the vector of genotypes for
each animal can then be centered by applying Equation
(3) using the allele frequencies of the group that it is
assigned to. Thus, for animal i assigned to group k with
group-specific allele frequencies pk, the corresponding
row in C is manipulated as:

M�
i ¼ Ci‐ 1‐2 pk‐0:5ð Þ:

A G-matrix corrected for specific allele frequencies for
different groups can then be calculated as:

GS ¼ M�M�0Xm

j¼1
2p̂j 1‐p̂j

� � ; ð4Þ
Table 3 Number of animals per validation group for the BS/OB
and FV populations and the seven traits considered

Training set Validation set

DEA others OB

BS/OB MY 3262 416 346 8

PY 3262 416 346 8

FY 3262 416 346 8

STA 3535 464 350 51

FL 3551 461 345 43

UD 3550 458 349 43

DEA others -

FV MY 5276 2589 97

PY 5276 2581 97 -

FY 5276 2581 97

STA 5956 2264 139 -

FL 5956 2272 139

UD 5956 2272 139 -

BS = Brown Swiss,OB =Original Braunvieh and FV = Fleckvieh,MY =milk yield, PY =
protein yield, FY = fat yield, STA= stature, FL = feet and legs,UD = udder conformation
Validation sets: DEA = German and Austrian validation animals; others = validation
animals with other countries of origin; OB = Original Braunvieh validation animals
with the same denominator as in Equation (2), which is
equivalent to expressing this part of the covariance rela-
tive to the overall covariance. The discarded component
of the original covariance structure, which is caused by
differences between group allele frequencies and overall
frequencies, can be summarized in a matrix GA. Treat-
ing 2P as a matrix of average “genotypes” of groups, a
matrix ~M is calculated by manipulating each group’s row
g as follows:

~Mg ¼ 2Pð Þg‐ 1‐ 2 pT‐ 0:5ð Þ:

Finally, GA is calculated as ~M ~M0 divided by the same
denominator as in Equations (2) and (4). The g x g
matrix GA can be treated and analyzed in the same man-
ner as the standard G-matrix. It can be expanded to give
an n x n matrix GA

* based on:

G�
A ¼ QGAQ0;

where Q is the matrix of genetic contributions of each
base group to each animal, which can be calculated as:

Q ¼ TQ�;

where T is a lower triangular matrix that results from
decomposing A into TDT’, as described in [33], and Q*

is an n x g design matrix that assigns genotyped animals
to groups. Despite this increase in dimensions, GA

* still
has rank (g – 1). Also, note that:

GT ¼ GS þ G�
A: ð5Þ

Although this decomposition is straightforward, its
dependency on the current allele frequencies and the
grouping of current animals causes some problems due
to ambiguous genetic composition and might not be
feasible under practical conditions since new genotypes
have to be successively integrated into the system. To
circumvent this problem, we propose to replace the
current allele frequencies with estimates of base allele
frequencies using the estimation procedure developed by
Gengler et al. [21]. Using a pedigree that relates geno-
typed animals to a set of arbitrarily defined but usually
ungenotyped base animals and calculating the conven-
tional relationship matrix A, the vector of overall base
allele frequencies is calculated as a generalized least
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squares mean by solving the following equation for each
marker j (column of C):

p�j ¼ 0:5 1
0
A‐11

� �‐1
1

0
A‐1 cj

� �
: ð6Þ

Similar to conventional estimation of GBV, base
animals can be grouped according to known or as-
sumed population subdivisions and/or generations,
when additional differentiation due to considerable
genetic trend has to be taken into account. To esti-
mate base group-specific allele frequencies, matrix 1
in Equation (6) is replaced by matrix Q. Matrices GT,
GS and GA

* can then be calculated as described above,
using estimates for global and group-specific base allele
frequencies and again GT = GS + GA

* , as described above.
Models
In order to study the influence of different definitions of
base group on the quality of prediction, we examined
several models. The general model is a standard mixed
animal model with:

y ¼ Xbþ Zuþ e;

where y is a vector of DYD or deregressed proofs of
genotyped animals, b is the vector of fixed effects, u
is the vector of random animal effects, incidence
matrices X and Z relate observations to levels of b
and u, respectively, and e is the residual effect. Further-
more, it is assumed that y ~ N(Xb, Vyy), e ~ N(0,Ve) and
u ~ N(0,Vuu), with Vyy = Vuu + Ve, Ve is diag(1/w)*σ2e,
where w is a vector of weights. The models to be com-
pared are defined in the following.

Standard model (model 0, M0): X = 1 and Vuu =GT × σu
2.

Model 1 (M1): X = 1 and Vuu =GS × σu
2.

Model 2 (M2): X = [1 | Q] and Vuu =GS × σu
2.

Note that M2 is equivalent to a model that fits
standard fixed group effects [34]. Although genomic
relationships corrected for unequal base allele fre-
quencies (GS) are used in M2, it can be shown by
least-squares theory that the solutions are identical to
a model that uses GT, if the same matrix Q is used
to estimate the base allele frequencies and to model
the fixed group effects (see Appendix 1). Finally, it
can be shown that using the standard genomic rela-
tionship matrix GT in standard GBLUP (standard
model, M0) in the presence of base groups that differ
in allele frequencies gives solutions equivalent to the
use of a more specific model with genetic groups as
random effects and equal variances for the base group
and the segregation effects (see Appendix 2), as in
the following representation:

X0X X0Z X0Q
Z0X Z0Z þ GS

‐1λ Z0Q
Q0X Q0Z Q0Q þ GA

‐1λ

2
4

3
5 b̂

û
ĝ

2
4

3
5 ¼

X0y
Z0y
Q0y

2
4

3
5;

where λ = σu
2/σe

2 and the final estimate for the breeding
value is =Qĝ + û. We calculated solutions for the
standard model using this more specific model, which,
in addition, allowed us to derive estimates for group ef-
fects and their prediction errors.
Models were tested in forward prediction by means of

the test described in the sub-section Material. To better
understand the factors that influence the predictive
ability of a specific model for different validation data-
sets, we analyzed the matrix of base group contributions
(Q) and derived base group estimates, as well as their
prediction errors, using M0 and M2. Differences between
group effect estimates were calculated and tested by for-
mulating linear hypotheses.

Distance measures
We calculated Fst statistics to illustrate the effects of the
proposed decomposition of G. Fst is a standard measure
of genetic distance and can be calculated either by pair-
wise analysis of differences in allele frequencies between
known or assumed subpopulations or breeds [18], or by
direct calculation from relationship matrices [6] as:

Fst ¼
~f ‐�f

1‐�f
;

where ~f is the mean coancestry over all subpopula-
tions and �f is the average coancestry within a given
subpopulation. The term 1‐~f is the average diversity
(heterozygosity) and depends on the coancestry within
the given subpopulation. Fst values are primarily used
as a tool to visualize substructures within groups of ani-
mals [6, 10, 35]. An Fst value of 0.05 can be interpreted as
a strong indication of a relevant subdivision [31, 32].

Results
Fst statistics
To illustrate the effects of the decomposition of the G-
matrix, we calculated Fst values for both components
(GS and GA

* ) and for the total G-matrix for the 4400 BS/
OB animals. Results of the Fst statistics are in Fig. 1.
Comparison of distances calculated from GA

* and GS

shows that population differences were primarily caused
by genetic distances in the base population. A substan-
tial genetic distance existed only between the OB group
and the two other groups. This distance was present in
both GA

* and GS, but was considerably greater in GA
* .

Interestingly, the distances in GA
* and GS acted additively



Fig. 1 Fst values of the base group term (GA
* ), the segregation term (GS), and total G (GT) for the 4400 BS/OB animals. BS = Brown Swiss and

OB = Original Braunvieh
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and their sum resulted in the distances calculated
from GT.

Forward prediction
Results of the forward prediction in terms of the coeffi-
cient of determination (R2), the intercept (a), the slope
(b) and corresponding standard errors are in Tables 4
and 5. For both breeds and across all traits, differences
between models were small, but M1 consistently re-
sulted in a lower R2.

Brown Swiss and Original Braunvieh breeds
For the BS/OB data, we found a minimal advantage in
terms of the R2 for model M2 that fitted fixed groups.
Table 4 Results for the coefficient of determination (R2) from
the forward prediction for the BS/OB and FV populations for
different models

BS/OB Trait M0 (GA
* and GS) M1 (GS) M2 (GS + fixed effects)

R2 MY 0.416 0.386 0.421

PY 0.409 0.370 0.417

FY 0.388 0.349 0.395

STA 0.499 0.382 0.505

FL 0.234 0.216 0.220

UD 0.416 0.394 0.410

FV

R2 MY 0.580 0.530 0.557

PY 0.512 0.463 0.491

FY 0.548 0.490 0.521

STA 0.526 0.515 0.516

FL 0.438 0.425 0.415

UD 0.406 0.404 0.405

BS = Brown Swiss,OB =Original Braunvieh, and FV = Fleckvieh,MY =milk yield, PY =
protein yield, FY = fat yield, STA= stature, FL = feet and legs,UD = udder conformation
Exceptions were for the traits FL and UD, here the
standard random model M0 showed the highest R2.
Across traits, R2 for M1 was 0.028 to 0.123 lower than
that of the best model. Based on results in terms of
slope, it should be noted that inflation of genomic pre-
dictions was lowest for conformation traits using model
M1. For milk traits, the slope was slightly higher and es-
timates were thus less inflated with the random model
M0 than with the fixed model M2.

Fleckvieh breed
Differences in R2 between M0 and M2 ranged from
0.001 to 0.021. For all six traits, M0 resulted in a higher
R2 than the fixed group model M2. The R2 achieved
with M1 was always lower than that achieved with M0
and M2. Nevertheless, the difference in R2 between M1
and M0 was only 0.002 for the UD trait. For the other
traits, the R2 that was achieved with M1 was between
0.011 and 0.058 lower than that with M0. Based on
slope, model M0 was superior and always led to the low-
est inflation of estimates for milk traits. For conform-
ation traits, the fixed model M2 led to the lowest
inflation. However, differences between models were
relatively small in many cases (between 0.004 and 0.143).

Base group effects
We estimated base group effects based on M0 and M2.
Properties of matrix Q always lead to linear dependen-
cies and no unique solution can be achieved. However,
significant differences between group estimates can be
derived and tested using linear hypotheses. Results in
Tables 6 and 7 are group differences estimated with M2.

Brown Swiss and Original Braunvieh breeds
In the BS/OB dataset, we defined nine different base
groups that led to 36 possible contrasts between base



Table 5 Results for the intercept (a), slope (b) and its standard error (s.e.) from the forward prediction for the FV and BS/OB
populations for different models

Trait M0 (GA
* and GS) M1 (GS) M2 (GS + fixed effects)

BS/OB a b (s.e.) a b (s.e.) a b (s.e.)

MY 85.551 0.828 (0.035) 87.672 0.813 (0.037) 85.091 0.820 (0.035)

PY 3.152 0.768 (0.033) 3.221 0.748 (0.035) 3.129 0.765 (0.033)

FY 3.202 0.762 (0.035) 3.198 0.753 (0.037) 3.178 0.757 (0.034)

STA 14.934 0.854 (0.029) −3.706 1.020 (0.044) 18.807 0.817 (0.028)

FL 1.285 0.979 (0.061) −4.480 1.032 (0.068) 24.889 0.751 (0.059)

UD 22.008 0.786 (0.032) 9.036 0.904 (0.038) 30.023 0.711 (0.030)

FV a b (s.e.) a b (s.e.) a b (s.e.)

MY 62.576 0.660 (0.019) 76.031 0.582 (0.018) 76.031 0.619 (0.018)

PY 3.213 0.664 (0.019) 3.914 0.593 (0.019) 3.914 0.644 (0.019)

FY 2.640 0.734 (0.019) 3.696 0.650 (0.019) 3.696 0.729 (0.020)

STA 0.046 0.782 (0.024) 0.076 0.774 (0.024) 0.076 0.786 (0.025)

FL −0.082 0.900 (0.036) −0.179 0.878 (0.036) −0.179 1.021 (0.038)

UD −0.013 0.713 (0.033) −0.031 0.708 (0.033) −0.031 0.736 (0.040)

BS = Brown Swiss, OB = Original Braunvieh and FV = Fleckvieh; values for the slope are printed in bold and values for the standard error of the slope are shown in
brackets. MY = milk yield, PY = protein yield, FY = fat yield, STA = stature, FL = feet and legs, UD = udder conformation
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groups. Differences were tested for significance using t-
tests. For the PY trait, significant differences were found
for the majority of group contrasts and only 5 out of 36
differences were not significant. The largest difference
was between the European base group (EUb) and the
German base group (DEb) (−64.86). Estimates for DEb
were significantly larger than estimates for all other
groups. Differences between the EUb group and the
other groups were also large but clearly negative. The
smallest difference was between the Swiss base group
Table 6 Differences between base group effects estimated with the
the diagonal and stature below the diagonal

EUb DEb ATb CHb IT

≤1960 >1960 >1960 >1960 >

EUb 0 −64.86*** −22.52*** −13.97*** −

DEb 25.48*** 0 42.35*** 50.90*** 4

ATb 15.66*** −9.82*** 0 8.55*** 3

CHb 1.21* −24.27*** −14.45*** 0 −

ITb 19.63*** −5.85*** 3.97*** 18.42*** 0

USb1 11.23*** −14.25*** −4.43*** 10.02*** −

USb2 23.05*** −2.43 n.s. 7.39*** 21.85*** 3

OBb1 3.56*** −21.92*** −12.11*** 2.35*** −

OBb2 18.05*** −7.43*** 2.38*** 16.83*** −

BS = Brown Swiss and OB = Original Braunvieh; Protein yield (in kg); Stature (in cm)
superior horizontal groups and positive values indicate superior vertical groups. n.s.

base group (born before 1960), DEb = German base group (born after 1960), ATb =
1960), ITb = Italian base group (born after 1960), USb1 = American base group (born
Braunvieh base group (born before 1960), OBb2 = Original Braunvieh base group (b
(CHb) and the older Original Braunvieh base group
(OBb1) (−0.05). The differences between the Austrian
(ATb) and the Italian (ITb) base groups were relatively
small in many cases.
For the STA trait, all group differences were signifi-

cant, except the difference between the German base
group (DEb) and the younger American base group
(USb2). The patterns of differences were quite similar as
for PY, although slightly different in magnitude for STA.
The largest and smallest differences were also between
fixed model for the BS/OB population for protein yield above

b USb1 USb2 OBb1 OBb2

1960 ≤1955 >1955 ≤1960 >1960

19.36*** −26.06*** −29.90*** −14.01*** −45.54***

5.50*** 38.80*** 34.97*** 50.85*** 19.32***

.15n.s. −3.55n.s. −7.38 n.s. 8.50* −23.03***

5.40** −12.10*** −15.93*** −0.05n.s. −31.58***

−6.70* −10.53*** 5.35* −26.18***

8.40*** 0 −3.83n.s. 12.05** −19.48***

.42* 11.82*** 0 15.88*** −15.65***

16.08*** −7.67*** −19.50*** 0 −31.53***

1.59** 6.82*** −5.01*** 14.49*** 0

; we calculated the differences row minus column, so negative values indicate
= not significant, * = (p < .05), ** = (p < .01), *** = (p < .001). EUb = European
Austrian base group (born after 1960), CHb = Swiss base group (born after
before 1955), USb2 = American base group (born after 1955), OBb1 = Original
orn after 1960)



Table 7 Differences between base group effects estimated with the fixed model for the FV population for protein yield above the
diagonal and stature below the diagonal

DEb1 DEb2 DEb3 DEb4 HOLb1 HOLb2 ATb CZb CHb FRb Divb

<1960 ≥1960 < 1970 ≥1970 < 1980 ≥1980 <1960 ≥1960 All All All All All

DEb1 0 −16.77*** 1.06 n.s. −7.49*** −50.43*** −49.94*** 18.21*** −32.21*** 10.89*** −28.14*** 49.76***

DEb2 −0.29n.s. 0 17.83*** 9.28** −33.66*** −33.17*** 34.98*** −15.45*** 27.66*** −11.37*** 66.54***

DEb3 −1.60n.s. −1.31 n.s. 0 −8.55*** −51.49*** −51.00*** 17.15*** −33.28*** 9.82*** −29.20*** 48.701***

DEb4 −0.24n.s. 0.05 n.s. 1.36 n.s. 0 −42.94*** −42.45*** 25.70*** −24.73*** 18.38*** −20.65*** 57.25***

HOLb1 5.16*** 5.45*** 6.76*** 5.40*** 0 0.49n.s. 68.64*** 18.21*** 61.32*** 22.29*** 100.19***

HOLb2 −1.49n.s. −1.20n.s. 0.11n.s. −1.25n.s. −6.65*** 0 68.15*** 68.14*** 60.83*** 21.80*** 99.70***

ATb −0.14 n.s. 0.16n.s. 1.46n.s. 0.11n.s. −5.30*** 1.35n.s. 0 −50.43*** −7.32** −46.35*** 31.55***

CZb −3.48*** −3.19n.s. −1.88n.s. −3.24n.s. −8.64*** −1.99n.s. −3.35n.s. 0 43.11*** 4.08n.s. 81.98***

CHb −1.79n.s. −1.50n.s. −0.19n.s. −1.55n.s. −6.95*** −0.30n.s. −1.65n.s. 1.69 n.s. 0 −39.03*** 38.88***

FRb 0.22n.s. 0.51n.s. 1.82n.s. 0.46n.s. −4.95*** 1.71n.s. 0.35n.s. 3.70* 2.01n.s. 0 77.91***

Divb −3.09*** −2.80n.s. −1.49n.s. −2.85* −8.25*** −1.60n.s. −2.95* 0.39n.s. −1.30n.s. −3.31** 0

FV = Fleckvieh; Protein yield (in kg); Stature (in cm); we calculated the differences row minus column, so negative values indicate superior horizontal groups and
positive values indicate superior vertical groups. n.s. = not significant, * = (p < .05), ** = (p < .01), *** = (p < .001). DEb1 = German base group (born before 1960);
DEb2 = German base group (born between 1960 and 1970), DEb3 = German base group (born between 1970 and 1980), DEb4 = German base group (born after
1980), HOLb1 = Red Holstein base group (born before 1960), HOLb2 = Red Holstein base group (born after 1960), ATb = Austrian base group, CZb = Czech base
group, CHb = Swiss base group, FRb = French base group, DIVb = base groups with animals with other countries of origin
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EUb and DEb (25.48) and between the Swiss base group
(CHb) and the European base group (EUb) (1.21),
respectively.
Fleckvieh breed
For the FV breed, almost all group differences were sig-
nificant for PY. The largest differences were between the
older Red Holstein base group (HOLb1) and the Austrian
base group (ATb), between the younger Red Holstein
base group (HOLb2) and ATb and between HOLb2 and
CZb (68.64, 68.15 and 68.14, respectively). The smallest
difference was between the two Red Holstein base
groups (0.49).
Table 8 Results of the analysis of the Q-matrix for the BS/OB popula

BS/OB EUb DEb ATb CHb

Year ≤1960 >1960 >1960 >19

Calib (3262) m 0.02 0.02 0.01 0.0

sd 0.04 0.05 0.03 0.0

DEA (416) m 0.02 0.03 0.01 0.0

sd 0.01 0.05 0.07 0.0

OB (8) m 0.25 0.00 0.01 0.0

sd 0.25 0.00 0.02 0.0

Others (346) m 0.01 0.01 0.00 0.0

sd 0.01 0.01 0.01 0.0

BS = Brown Swiss and OB = Original Braunvieh; averages (m) and standard deviatio
DEb = German base group (born after 1960); ATb = Austrian base group (born after
(born after 1960), USb1 = American base group (born before 1955), USb2 = American
OBb2 = Original Braunvieh (born after 1960), Calib = training set; Validation sets: DEA
other countries of origin, OB = Original Braunvieh validation animals
The situation for STA was almost the opposite. Only
16 group differences were significant, while 39 out of 55
differences were not significant. From these 16 signifi-
cant differences, 10 were between the older Red Holstein
base group (HOLb1) and all other base groups.

Base group contributions
Analysis of the matrix of base group contributions (Q)
revealed several general breed-specific aspects. In
addition, it was possible to characterize the validation
group, which can help interpretation of other results.
Averages and standard deviations of base group contri-
butions for the PY and STA traits are in Tables 8 and 9
for the two breeds.
tion

ITb USb1 USb2 OBb1 OBb2

60 >1960 ≤1955 >1955 ≤1960 >1960

1 0.01 0.24 0.62 0.03 0.03

3 0.03 0.07 0.12 0.07 0.06

0 0.00 0.23 0.62 0.03 0.06

4 0.01 0.04 0.04 0.02 0.04

5 0.00 0.00 0.00 0.54 0.16

9 0.00 0.00 0.00 0.19 0.15

1 0.00 0.27 0.67 0.01 0.01

1 0.01 0.03 0.05 0.01 0.02

ns (sd) of base group contributions are shown. EUb = European base group,
1960), CHb = Swiss base group (born after 1960), ITb = Italian base group
base group (born after 1955), OBb1 = Original Braunvieh (born before 1960),
= German and Austrian validation animals, others = validation animals with



Table 9 Results of the analysis of the Q-matrix for the FV population

FV DEb1 DEb2 DEb3 DEb4 HOLb1 HOLb2 ATb CZb CHb FRb Divb

Year <1960 ≥1960 < 1970 ≥1970 < 1980 ≥1980 <1960 ≥1960 All All All All All

Calib (5273) m 0.13 0.61 0.04 0.01 0.04 0.03 0.09 0.01 0.04 0.01 0.00

sd 0.07 0.17 0.04 0.04 0.04 0.05 0.12 0.08 0.04 0.05 0.01

DEA (2581) m 0.13 0.64 0.05 0.01 0.04 0.02 0.07 0.00 0.04 0.01 0.00

sd 0.03 0.08 0.02 0.03 0.03 0.02 0.06 0.00 0.02 0.01 0.00

Others (97) m 0.07 0.36 0.02 0.00 0.09 0.08 0.05 0.25 0.04 0.03 0.02

sd 0.03 0.14 0.02 0.01 0.05 0.07 0.04 0.13 0.03 0.06 0.02

FV = Fleckvieh; averages (m) and standard deviations (sd) of base group contributions are shown
DEb1 = German base group (born before 1960), DEb2 = German base group (born between 1960 and 1970), DEb3 = German base group (born between 1970 and
1980), DEb4 = German base group (born after 1980), HOLb1 = Red Holstein base group (born before 1960), HOLb2 = Red Holstein base group (born after 1960),
ATb = Austrian base group, CZb = Czech base group, CHb = Swiss base group, FRb = French base group, DIVb = base groups with animals with other countries of
origin, Calib = training set, Validation sets: DEA = German and Austrian validation animals, others = validation animals with other countries of origin
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Brown Swiss and Original Braunvieh
In the BS population, the two American base groups
(USb1 and USb2) represented between 80 % and 90 % of
the overall genetic makeup of the genotyped population
(Table 8). No differences in US contributions were de-
tected between the training set (Calib) and the valid-
ation animals that were assigned to the DEA validation
set and only a slight increase in US contributions was
found in the others validation set. The small number of
validation animals that was unequivocally assigned to
the OB group showed a marked difference in this
respect, with absolutely no contributions from the US
base groups. Standard deviations of contributions for
training animals (Calib) were also highest for the two
US groups. Comparing standard deviations of all contri-
butions between Calib and validation groups showed
that the validation animals tended to have less variation,
again except for the OB group.

Fleckvieh
In the FV breed, the second German base group (DEb2)
had the largest contribution to all validation groups
(Table 9). Average contributions of more than 0.60 of
the second German base group to the Calib training set
and DEA validation set were observed and a consider-
able average contribution of 0.36 to the others validation
set. The contribution of the Czech group (CZb) to the
others validation set was relatively high (0.25).
As previously, across all base groups, we found similar

average contributions to Calib and DEA and decreasing
standard deviations in base group contributions when
comparing Calib to DEA, which indicates an ongoing
equalization of contributions.

Discussion
In conventional methods for estimating breeding values,
phantom parent groups are used in most practical
applications. The reason for this is that the theoret-
ical base population is rarely correctly represented in
the available pedigree. The same is of course true
for genomic evaluation models. Stratification of the
population can be easily determined by Fst plots.
Concept and implementation
The decomposition of the standard G-matrix that we
propose here is primarily an analytical tool. It allows
studying the following aspects in some detail: (i) whether
and how differences in allele frequencies between base
groups contribute to the proportion of genetic variance
explained by differences between base groups; and (ii)
how the effects estimated for the base groups influence
the current population and their genomic predictions.
Conceptually, it follows the classical approach for mod-
eling base groups in genetic evaluations and extends it
to the GBLUP case. More fundamentally, it theoretically
shows that parts of the genetic variation represented by
the G-matrix can be assigned to systematic differences
in allele frequencies between base populations. This im-
plies that standard GBLUP is equivalent to a model that
fits random genetic groups, where differences in group
means are modeled as part of the natural additive-
genetic variance (assumed to be known in the present
investigation). Recently, Makgahlela et al. [13] showed
that, in the case of the largely admixed Nordic Red
population, a model that fits a fixed genetic group has
some advantage in terms of the reliability of DGV over
the standard GBLUP model. Modeling groups as fixed
might be advantageous if true differences between
groups are larger than what can be attributed to differ-
ences in allele frequencies of genetic markers. This
can arise from inconsistent linkage disequilibrium
phases between quantitative trait loci (QTL) and
markers between subpopulations or breeds, or from
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different QTL segregating within groups. Both aspects
have been used in the past to explain why across-
breed genomic predictions based on 50 k genotypes
have low accuracy [36–38].
As in the classical approach for modeling base groups,

we assigned base animals to groups and calculated a
matrix of genetic contributions Q using standard method-
ology. This matrix Q was then used to estimate average
allele frequencies using mixed-model methodology, as de-
scribed by Gengler et al. [21]. As mentioned in the
Methods section, estimation of average allele frequencies
in base groups is not essential for the proposed decom-
position of G. However, it provides a convenient way to
integrate new animals under practical conditions. Concep-
tually, it divides the genetic distance between any pair of
animals into two parts, i.e. a distance that already exists in
the base population and a distance that originates from
the history of the breed as documented by the known
pedigree. Moreover, estimating allele frequencies in base
groups from subsets of genotypes may lead to similar
problems as in standard applications of models that fit
genetic groups, i.e., if the amount of data to estimate allele
frequencies in base groups reliably is not sufficient, it can
result in a loss of accuracy and introduction of bias [39].
Then, this tradeoff between defining all possible relevant
base groups and estimability needs to be taken into ac-
count. A closer examination of the required size and prop-
erties for an optimal design of base groups is beyond the
scope of this paper.
Group effects were not accounted for when dereg-

ressing MACE breeding values for BS/OB animals be-
cause (i) group effects or group contributions are
usually not reported to Interbull by the participating
countries; (ii) Interbull introduces its own group cate-
gorizations based on birth year of bull dams for
MACE evaluation; and (iii) Interbull does not report
group effects or group contributions back to the par-
ticipating countries. Because of these limitations, we
cannot exclude that our results for BS/OB animals
may be influenced in one way or the other by the
properties of MACE breeding values.
Since we tested different models only in a single

forward prediction, the generalization of our results is
not straightforward. However, from a practical point
of view, the steps that we followed allowed us to bet-
ter characterize the genetic composition of the valid-
ation groups. This in turn might help to decide if a
standard GBLUP model is sufficient or whether a dif-
ferent model should be preferred. However, modeling
genetic groups in any of the proposed ways is neither
intended nor expected to improve the prediction for
a standard animal with a pedigree that has many
generations and that is sufficiently complete. Predic-
tions for an animal with an incomplete pedigree or a
limited number of genotyped ancestors should, how-
ever, benefit from the inclusion of group effects in
one form or the other.

Models
We compared three models, which treated effects of
base groups as random (M0), as fixed (M2), or ignored
them completely (M1). Model M1 consistently showed
the lowest R2 values across both breeds and all traits.
This was expected, since ignoring part of the genomic
information should not result in increased predictive
ability. However, it is interesting to note that the segre-
gation term itself results in a relatively good prediction.
Using M1, we observed differences in the decrease of
the model R2 between traits, with the UD trait being the
least influenced by GA

* . We cannot exclude that there
might be cases where omission of base groups will in-
crease the R2 of predictions. However, the slopes of the
regression of current DYD or deregressed proofs on
DGV that we used as a test statistic here gave no indica-
tion that omitting GA

* without adjusting the genetic vari-
ance could lead to less inflated estimates. Recently,
Makgahlela et al. [14] compared predictions using a
genomic relationship matrix based on average allele
frequencies across breeds with predictions using breed-
specific allele frequencies in the Nordic Red dairy cattle
population. This comparison is conceptually quite close
to what we did in the comparison between the reduced
model (M1) and the fixed model (M2). The authors
found a smaller predictive power and greater inflation of
DGV when considering breed-specific allele frequencies.
Since using breed-specific allele frequencies without
modeling differences in allele frequencies in the base
population is equivalent to our reduced model (M1), in
this respect, their results are consistent with those pre-
sented here.
In terms of predictive power, M2 was better than M0

for all milk traits and one conformation trait for the BS/
OB data (Table 5). With the FV data, we saw a clear ad-
vantage of M0 for all traits. In a preliminary study [40],
we had reported that the OB and current BS populations
were separated by a fairly large genetic distance. The val-
idation BS/OB group that we used here included only
very few OB animals. The observed genetic distance and
the fact that this group of animals is small compared to
the overall validation group might explain the small
superiority of M2 observed for the BS/OB data. Genetic
distances of similar magnitude were not detected in the
FV population, for which M0 was clearly the best model.
However, the German-Austrian cooperation for genetic
evaluations in FV [22] recently fully opened the routine
evaluations for the Czech population, which shows some
differences in genetic composition compared to the
current German-Austrian breeding population (Table 9).
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Additional investigations will be necessary to verify if
M0 is still superior with an extended base population that
will very likely be the result of this extended cooperation.
Genetic contributions and base group effects
Analysis of the matrix of genetic contributions Q revealed
some interesting features. For example, on the one hand,
the analysis of average contributions of genetic groups to
current animals revealed that US animals had a strong im-
pact on the current BS population in Europe. On the
other hand, a substantial contribution of the “old” Euro-
pean base group (EUb) to the OB validation group was
found. Averages and standard deviations of contributions
are also an indirect indicator for how accurate base allele
frequencies and base group effects could be estimated
from the current data. However, since information in Q
naturally implies some degree of collinearity, this factor
has to be taken into account also. Finally, differences in
trait means between base groups can only be detected if
there is enough variation in base group contributions
within the training set (Calib). Such variation was ob-
served for both breeds and was considerably smaller for
the dominant groups of the validation set. This was ex-
pected since, in the last 20 years, much less migration has
occurred in both populations, which probably resulted in
less admixture in the more recent groups. Although this
was not the primary focus of this investigation, it was in-
teresting to note the extremely strong genetic contribution
of American Brown Swiss animals to the current BS popu-
lation. The validation group OB was clearly an exception
in the sense that a small or even non-existing contribution
of American Brown Swiss cattle defines what an OB ani-
mal is. In contrast, the strong contribution of the DEb2
group to the FV population seems to be an artifact of the
completeness of the pedigree used, i.e. most of the pedi-
grees traced back to this base group.
For both breeds and for the traits analyzed here, it was

possible to estimate significant differences between the
means of base groups in most cases (Tables 6 and 7).
Treating base groups as fixed or random resulted in
similar patterns, although they were more pronounced
in the case of fixed effects. The observed effects were
quite consistent with our expectations and seem to be
reasonable when considering the limits that were im-
posed on estimability and precision by the collinearity
and dependencies in Q (Q has no full column rank). For
example, the two Holstein base groups in the FV dataset
had a clear advantage for protein yield, which is not sur-
prising since Holstein bulls were introgressed for exactly
that reason. In some cases, such as the advantage found
for the DEb group in BS, knowing that the base group
definition for DEb also comprised relatively young base
animals was helpful, whereas assignment to American
Brown Swiss was more linked to a specific period further
back in the history of the breed.
Both the distribution of genetic contributions and pre-

cision of base group effects emphasize that when consid-
ering genetic grouping in genetic evaluation models, the
question of estimability and relevance for the current
population should always be included [39]. However, as
already noted above, it is not reasonable to believe that
the model used has a strong impact on predictive power
if the animals used for validation show no differences in
their genetic composition with respect to the base
groups and if the majority of them have complete pedi-
grees of sufficient depth.

Additional considerations
This investigation demonstrates that, in many cases, the
genomic relationship matrix includes an important com-
ponent of variation that has no corresponding counterpart
in the conventional numerator relationship matrix. How-
ever, many practical applications of the estimation of GBV
include a step for scaling the genomic relationship matrix
to the numerator relationship matrix to set them on the
same genetic base (see for example [41]). Based on our re-
sults, it seems more suitable to do this scaling based on
matrix GS only. This component of the G-matrix should
be free of the effects of systematic differences in allele fre-
quencies between base groups (represented in GA

* ), which
might otherwise exacerbate the derivation of correct scal-
ing factors. This issue was also raised by Makgahlela et al.
[14] and might be of special importance for applications
of one-step genomic evaluations [16, 17, 42, 43]. Further-
more, it suggests that estimating genetic parameters for
genomic evaluations using GT might be preferred over a
simple transfer of the parameters estimated with the nu-
merator relationship matrix.
Possible extensions of M0, for example with an individ-

ual λ for group effects or – in the most general form –
using an identity matrix instead of GA, e.g. [39], as well as
an individual λ for group effects were beyond the scope of
this paper. In addition, these extensions would require the
estimation of a variance component for groups, which
would be difficult to do due to the typically small number
of degrees of freedom for the variance between group
means. Using GA but assuming an individual λ for group
effects is also somewhat questionable from a conceptual
point of view, since it would be necessary to describe the
covariance between and within subpopulations based on
the same distance between allele frequencies but with dif-
ferent genetic variances.

Conclusions
We showed that the proposed decomposition of the G-
matrix is helpful to examine the relative importance of base
group and segregation effects in a dataset. The commonly
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used genomic relationship matrix G is equivalent to our
model M0, where base groups and segregation terms are
considered as random effects with the same genetic vari-
ance. Although it is interesting to examine contributions of
different founder populations from a scientific point of
view, we also conclude that the standard model M0 is pre-
ferred in many cases, e.g. if base group effects are small or
difficult to estimate, or if the current population is
homogenous with balanced base group contributions.
However, a fixed model (M2) might be preferred if base
group effects are large (i.e. in the range of differences
between breeds rather than between subpopulations) or if
the genomic evaluation comprises two or more separated
populations with only weak genetic links.

Appendix 1
Proof that model 2 (fixed group effects model using GS

as covariance of individual genetic values) and a corre-
sponding model using GT as covariance of individual
genetic values will lead to identical solutions for fixed
and random effects.
As shown in Appendix 2, the standard model and

model 0 are equivalent. Following that, BLUP solutions
of a model using GT as covariance of breeding values
can be equivalently written as:

û ¼ GSV‐1
yy~y þQGAQ0V‐1

yy~y ;

where Q is a matrix of genetic contributions of random
groups to animals with observations as described in
Methods and ỹ is the vector of observations corrected for
the GLS-estimates of fixed effects. If the same matrix Q is
used to model the fixed group effects, as it is generally
done, this might be written as:

û ¼ GSV‐1
yy y‐Qb̂
� �

þQGAQ0V‐1
yy y‐Qb̂
� �

:

By omitting the global mean since it cannot be estimated

simultaneously and by replacing b̂ by its GLS-estimate, this
can be further manipulated to give:

û ¼ GSV
‐1
yy y‐Qb̂
� �

þQGAQ
0V‐1

yy y‐Qb̂
� �

¼ GSV
‐1
yy y‐Qb̂
� �

þQGAQ
0V‐1

yyy‐QGAQ
0V‐1

yyQb̂

¼ GSV
‐1
yy y‐Qb̂
� �

þQGAQ
0V‐1

yyy‐QGAQ
0V‐1

yyQ Q0V‐1
yyQ

� �
−1QV‐1

yyy

¼ GSV
‐1
yy y‐Qb̂
� �

þQGAQ
0V‐1

yyy‐QGAQ
0V‐1

yyy

¼ GSV‐1
yy y‐Qb̂
� �

;

and identical solutions for the random effect u are
the consequence. It follows that the product of the
design matrix Q and the contrast for the random
group effect (represented by the second term above)
is also zero, which is a necessary prerequisite for the
resulting estimates, for the fixed genetic groups to be
equal in both models also [44]. As a general consequence
of the cited publication [44], any extension of V in the
GLS-estimate of b of the form:

V� ¼ V þ XUX0;

for an arbitrary matrix U, where X is the same design
matrix used to estimate the fixed effect itself, results in
GLS-estimates for the fixed effects that are identical to
those using V alone [44].

Appendix 2
Proof that the standard model is equivalent to the ran-
dom group model M0.
Let the standard model be:

y ¼ Xbþ Zuþ e;

where y is a vector of observations, b is a vector of
fixed effects, u is a vector of random breeding values,
e is a vector of residuals and X and Z are known de-
sign matrices. For simplification of the presentation Z
is assumed to be an identity matrix and is omitted.
Furthermore, y ~ N(Xb, Vyy), u ~ N(0,Vuu) and e ~
N(0,Ve) where:

Ve ¼ I� σ2e ¼ R;

Vuu ¼ ~GT � σ2u ¼ GT;

and

Vyy ¼ GT þ R:

Assume a decomposition of the coefficient matrix
~GT ¼ ~GS þ ~GA

� �� σ2u ¼ GS þ G�
A where GA

* can be
expressed as the product of a matrix of fixed regres-
sion coefficients Q and a matrix GA, that describes
the covariance of random slopes, so GA

* =QGAQ '.
The BLUP estimates for random breeding values are:

û ¼ GTV‐1
yy y‐Xb̂
� �

¼ GTV
‐1
yy~y ;

with b̂ being the generalized least squares estimates of
b. It follows that:

Vyy ¼ GT þ R

¼ GS þ G�
A þ R

¼ GS þQGAQ0 þ R;

and

û ¼ GTV‐1
yy~y

¼ GS þ G�
A

� �
V‐1

yy~y
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¼ GS þQGAQ0ð ÞV‐1
yy~y

¼ GSV‐1
yy~y þQGAQ0V‐1

yy~y :

Let the random group model be:

y ¼ Xbþ Zuþ Qgþ e;

where y is a vector of observations, b is a vector of fixed
effects, u is a vector of random genetic values, g is a
vector of random group effects, e is a vector of re-
siduals and X and Z are known design matrices. For
simplification of the expressions, Z is assumed to be
an identity matrix and is omitted. Q is a matrix of
genetic contributions of random groups to animals
with observations as described in Methods. Further-
more, y ~ N(Xb, Vyy), u ~ N(0,Vuu), g ~ N(0,Vgg) and
e ~ N(0,Ve) where:

Ve ¼ I� σ2e ¼ R;

Vuu ¼ ~GS � σ
2
u ¼ GS;

Vgg ¼ ~GA � σ
2
u ¼ GA;

Vyy ¼ GS þQGAQ
0 þ R;

¼ GS þ G�
A þ R:

This is identical to the phenotypic variance assumed
by the standard model if the same Q is used.
The BLUP solutions for random animal and group ef-

fects are:

û ¼ GSV
‐1
yy y‐Xb̂
� �

¼ GSV
‐1
yy~y ;

and

ĝ ¼ GAQ
0V‐1

yy y‐Xb̂
� �

¼ GAQ
0V‐1

yy ~y :

Let the full estimate for the breeding value (the rank-
ing criterion) be:
¼ GSV
‐1
yy~y þ QGAQ

0V‐1
yy ~y ;
this is identical to the breeding value solution of û of the
standard model if Q is identical in both models.
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