Scholarly article on topic 'A measurement of the ratio of the production cross sections for $$W$$ W and $$Z$$ Z bosons in association with jets with the ATLAS detector'

A measurement of the ratio of the production cross sections for $$W$$ W and $$Z$$ Z bosons in association with jets with the ATLAS detector Academic research paper on "Physical sciences"

0
0
Share paper
Academic journal
Eur. Phys. J. C
OECD Field of science
Keywords
{""}

Academic research paper on topic "A measurement of the ratio of the production cross sections for $$W$$ W and $$Z$$ Z bosons in association with jets with the ATLAS detector"

Eur. Phys. J. C (2014) 74:3168 DOI 10.1140/epjc/s10052-014-3168-9

The European Physical journal C

Regular Article - Experimental Physics

A measurement of the ratio of the production cross sections for W and Z bosons in association with jets with the ATLAS detector

ATLAS Collaboration*

CERN, 1211 Geneva 23, Switzerland

Received: 27 August 2014 / Accepted: 5 November 2014 / Published online: 2 December 2014

© CERN for the benefit of the ATLAS collaboration 2014. This article is published with open access at Springerlink.com

Abstract The ratio of the production cross sections for W and Z bosons in association with jets has been measured in proton-proton collisions at *Js = 7 TeV with the ATLAS experiment at the Large Hadron Collider. The measurement is based on the entire 2011 dataset, corresponding to an integrated luminosity of 4.6fb-1. Inclusive and differential cross-section ratios for massive vector bosons decaying to electrons and muons are measured in association with jets with transverse momentum pT > 30 GeV and jet rapidity \y | < 4.4. The measurements are compared to next-to-leading-order perturbative QCD calculations and to predictions from different Monte Carlo generators implementing leading-order matrix elements supplemented by parton showers.

1 Introduction

Precise measurements of the production of vector bosons in association with jets are important tests of quantum chro-modynamics (QCD) and provide constraints on background processes to Higgs boson studies and to searches for new physics. The measurement of the ratio of W + jets to Z + jets1 production cross sections, termed Rjets, directly probes the difference between the kinematic distributions of the jet system recoiling against the W or Z bosons.

In comparison to separate W + jets and Z + jets cross section measurements, the Rjets measurement is a more precise test of perturbative QCD (pQCD), since some experimental uncertainties and effects from non-perturbative processes, such as hadronization and multi-parton interactions, are greatly reduced in the ratio. This allows precise comparisons with state-of-the-art Monte Carlo simulations and next-to-leading-order (NLO) perturbative QCD calculations to be made.

1 In this paper, W means a W + or W boson and Z is defined as a Z or y * boson.

* e-mail: atlas.publications@cern.ch

At low energies, the difference in vector-boson masses translates to a change in momentum transfer between incoming partons and thus different hadronic radiation patterns. In addition, the parton distribution functions of the proton (PDFs) imply different quark-gluon and quark-antiquark contributions to W + jets and Z + jets processes.

At very high energies, the vector-boson mass difference is not large relative to the momentum transfer, so differences between W + jets and Z + jets production are expected to decrease, even though some differences in the parton distribution functions remain. A precise measurement of Rjets can therefore be used, in the context of searches for new particles or interactions beyond the Standard Model, to infer the W + jets contribution, given Z + jets production in the same phase space, or vice versa. The Rjets measurement may also be sensitive to direct contributions from new particle production, if the new particles decay via W or Z bosons [1]. New physics phenomena are generally expected to appear in various topologies with high-momentum jets or high jet multiplicities, highlighting the importance of studying QCD effects in those regions of phase space.

The ATLAS collaboration performed the first measurement of Rjets as a function of the jet transverse momentum in events with exactly one jet in proton-proton collisions at *fs = 7 TeV, using a data sample corresponding to an integrated luminosity of 33 pb-1 [2]. This result demonstrated that the precision obtained in such a measurement is sufficient to be sensitive to the QCD effects mentioned above. The CMS collaboration performed an Rjets measurement of the jet multiplicity in vector-boson production with up to four associated jets, based on a similar dataset corresponding to an integrated luminosity of 36 pb-1 in pp collisions collected at *fs = 7 TeV [3]. The results reported in this paper are based on a dataset corresponding to an integrated luminosity of 4.6fb-1, collected with the ATLAS detector during the 2011 pp collision run of the LHC at *fs = 7 TeV. This dataset is over a hundred times larger than the one used in previously published results, allowing improved precision

Table 1 Particle-level phase space of the present Rjets measurement

Lepton px and px > 25 GeV, \n\ < 2.5 pseudorapidity n

W transverse mass and mx > 40 GeV, px > 25 GeV neutrino px

Z invariant mass and 66 < mu < 116 GeV, A Rtt > 0.2 lepton-lepton angular separation

Jet px, rapidity and jet-lepton px > 30 GeV, \y\ < 4.4, ARjt > 0.5 angular separation

over a much larger region of phase space as well as the study of previously inaccessible differential distributions.

xhe Rjets measurement is done for the electron and muon decay channels of the W and Z bosons for jets with transverse momentum pT > 30 GeV and rapidity \y \ < 4.4? The measurements of the electron and muon channels are performed in slightly different phase spaces and combined in a common phase space defined in terms of the pT and pseudorapidity n of the leptons, the invariant mass of the Z boson, the angular separation between the two leptons3 of the Z boson decay, and the transverse mass4 of the W boson, as presented in Table 1. The W and Z selections are based on the W + jets and Z + jets cross-section measurements detailed in Ref. [4,5], with a minor update in the Z selection to further reduce the uncertainty on the Rjets measurement. In the results reported here, Rjets is measured as a function of the inclusive and exclusive jet multiplicity (Ajets) up to four jets. An extensive set of differential measurements is also presented, in which Rjets is measured as a function of the transverse momentum and the rapidity of the leading jet, which is the one with largest transverse momentum, in events with at least one jet. The ratio Rjets is also presented as a function of the transverse momentum and rapidity of the second and third leading jets in events with at least two or three jets respectively. A set of differential measurements as a function of dijet observables in events with at least two jets is presented. xhe measurement of Rjets as a function of

2 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, are used in the transverse plane, $ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle 6 as n = — lntan(6/2).

3 Angular separations between particles or reconstructed objects are measured in space using

A R = y (A$)2+(An)2.

4 The transverse mass of the W boson is reconstructed as mj =

ij2pTpT(1 — cos(^ — $v)) where pT and pT are the transverse momenta of the charged lepton and the neutrino respectively and and their azimuthal directions.

the summed scalar pT of the jets (ST) for different jet multiplicities is also reported. The results are compared to several Monte Carlo generators and with next-to-leading-order pQCD predictions corrected for non-perturbative effects.

The paper is organized as follows. The experimental setup is described in Sect. 2. Section 3 provides details on the simulations used in the measurement, and Sect. 4 discusses the event selection. The estimation of background contributions is described in Sect. 5, and the procedure used to correct the measurements for detector effects is described in Sect. 6. The treatment of the systematic uncertainties is described in Sect. 7. Section 8 discusses the combination of the electron and muon results. Section 9 provides details on the NLO pQCD predictions. Finally, Sect. 10 discusses the results, and Sect. 11 presents the conclusions.

2 The ATLAS detector

The ATLAS detector [6] is a multi-purpose detector with a symmetric cylindrical geometry and nearly 4n coverage in solid angle. The collision point is surrounded by inner tracking devices followed by a superconducting solenoid providing a 2 T magnetic field, a calorimeter system, and a muon spectrometer. The inner tracker provides precision tracking of charged particles for pseudorapidities \n\ < 2.5. It consists of silicon pixel and microstrip detectors and a straw-tube transition radiation tracker. The calorimeter system has liquid argon (LAr) or scintillator tiles as active media. In the pseudorapidity region \n\ < 3.2, high-granularity LAr electromagnetic (EM) sampling calorimeters are used. An iron/scintillator tile calorimeter provides hadronic coverage for \n\ < 1.7. The endcap and forward regions, spanning 1.5 < \n\ < 4.9, are instrumented with LAr calorimeters for both the EM and hadronic measurements. The muon spectrometer consists of three large superconducting toroids, each comprising eight coils, and a system of trigger chambers and precision tracking chambers that provide triggering and tracking capabilities in the ranges \n\ < 2.4 and \n\ < 2.7 respectively.

The ATLAS trigger system uses three consecutive levels. The Level-1 triggers are hardware-based and use coarse detector information to identify regions of interest, whereas the Level-2 triggers are based on fast online data reconstruction algorithms. Finally, the Event Filter triggers use offline data reconstruction algorithms.

3 Monte Carlo simulation

Simulated event samples were used to correct the measured distributions for detector effects and acceptance, to determine some background contributions and to correct theory calculations for non-perturbative effects. Signal samples

of Wlv) + jets and Z(^ ll) + jets (where l = e,^) events were generated with ALPGEN v2.13 [7], with up to five additional partons in the final state. It was interfaced to HERWIG v6.520 [8] for parton showering and fragmentation, with JIMMY v4.31 [9] for contributions from multi-parton interactions and with PHOTOS [10] to calculate final-state QED radiation. The CTEQ6L1 [11] PDFs were used with the AUET2-CTEQ6L1 tune [12], a set of specific non-perturbative event generation parameter values. Similar samples were produced with ALPGEN v2.14 interfaced to PYTHIA v6.425 [13] using the PERUGIA2011C [14] tune and PHOTOS. They were used to estimate the uncertainties on non-perturbative corrections for parton-level NLO pQCD predictions. An additional set of signal samples was generated with SHERPA v1.4.1 [15,16] and CT10 PDFs [17]. Top quark pair production (tt) was simulated with ALPGEN and HERWIG+JIMMY, in the same configuration as for the signal samples. Additional tt samples were generated with the POWHEG-BOX generator v1.0 [18], using the CT10 next-to-leading order (NLO) PDFs and interfaced to PYTHIA v6.425. These additional samples were reserved for the evaluation of the systematic uncertainties. Single top-quark production, including Wt production, was modelled with AcerMC 3.8 [19] interfaced to PYTHIA and MRST LO* PDFs [20]. The diboson production processes W + WWZ, and ZZ were generated with HERWIG v6.510 and JIMMY v4.3 using the MRST LO* PDFs [20] and the AUET2- LO* tune [12].

The generated Monte Carlo (MC) samples were overlaid with additional inelastic pp scattering events generated with PYTHIA v6.425, following the distribution of the average number of pp interactions in the selected data. The sam-

Table 2 Kinematic event selection criteria for W(^ lv) + jets and Z (^ ll) + jets event samples

ples were then passed through the simulation of the ATLAS detector based on GEANT4 [21,22] and through the related trigger simulation.

All samples were normalized to the inclusive cross section calculated at the highest pQCD order available. The W/Z +jets signal samples were normalized to the next-to-next-to-leading-order (NNLO) pQCD inclusive Drell-Yan predictions calculated with the FEWZ [23] program and the MSTW2008 NNLO PDFs [24]. The tt samples were normalized to the cross section calculated at NNLO+NNLL in Refs. [25-30], and the diboson samples were normalized to cross sections calculated at NLO using MCFM [31] with the MSTW2008 PDF set.

The simulated events were reconstructed and analysed with the same analysis chain as the data. Scale factors were applied to the simulated samples to correct the lepton trigger, reconstruction, and identification efficiencies to match those measured in data.

4 Event selection

The data samples considered in this paper correspond to a total integrated luminosity of 4.6 fb-1, with an uncertainty of 1.8 % [32]. Table 2 summarizes the kinematic requirements for leptons, W bosons, Z bosons, and jets. The selection criteria for W boson candidates were defined using the largest possible coverage of the ATLAS detector for electrons, muons and jets. The selection criteria for Z boson candidates were modified with respect to those in Ref. [5], to be as similar as possible to the W boson selection in order to maximize the cancellation of uncertainties in the Rjets measurement: trig-

Electron selection Muon selection

Lepton pi Lepton pseudorapidity PT > 25 GeV \n\ < 2.47 (excluding 1.37 < \i J| < 1.52) pT > 25 GeV Inl < 2.4

W ^ tv event selection

Z veto Missing transverse momentum Transverse mass Exactly one selected lepton £T?iss > 25 GeV mT > 40 GeV

Z ^ tt event selection

Multiplicity Charge Invariant mass Separation Exactly two selected leptons Opposite sign 66 < mil < 116 GeV AR££ > 0.2

Jet selection

Transverse momentum Jet rapidity Jet-lepton angular separation pT > 30 GeV ly| < 4.4 ARtj > 0.5

gers requiring at least one lepton were employed, the minimum lepton transverse momentum was raised from 20 GeV to 25 GeV, tighter criteria were used to identify electrons and slightly looser requirements were placed on the second leading lepton with respect to the leading one.

The data were collected using single-electron or single-muon triggers, employing the same requirements for the W and Z data selections. Electron-channel events were selected using a trigger that required the presence of at least one electron candidate, formed by an energy cluster consistent with an electromagnetic shower in the calorimeter and associated to an inner detector track. Electron candidates were required to have a reconstructed transverse energy above 20 GeV or 22 GeV, depending on the trigger configuration of the different data periods. Muon-channel events were recorded using a trigger that required the presence of at least one muon candidate with transverse momentum above 18 GeV. Lepton trigger thresholds were low enough to ensure that leptons with pT > 25 GeV lie on the trigger efficiency plateau.

Events were required to have a primary vertex, defined as the vertex in the event with the highest summed pT2 of all associated tracks, among vertices with at least three tracks.

Electrons were reconstructed by matching clusters of energy found in the electromagnetic calorimeter to tracks reconstructed in the inner detector. Candidate electrons had to satisfy the "tight" quality requirements defined in Ref. [33], which include requirements on the calorimeter shower shape, track quality, and association of the track with the energy cluster found in the calorimeter. Electron candidates had to have pT > 25 GeV and \n\ < 2.47, where the transition region between barrel and endcap electromagnetic calorimeter sections at 1.37 < \n\ < 1.52 was excluded.

Muons were reconstructed from track segments in the muon spectrometer that were matched with tracks in the inner detector [34], and were required to have pT > 25 GeV and \n\ < 2.4. To suppress particles from hadron decays, the leading muon had to be consistent with originating from the primary vertex by requiring \d0/a(d0)\ < 3.0, where d0 is the transverse impact parameter of the muon and a (d0) is its uncertainty.

In order to suppress background from multi-jet events where a jet is misidentified as a lepton, the leading lepton was required to be isolated. An additional pT- and n-dependent requirement on a combination of calorimeter and track isolation variables was applied to the leading electron, in order to yield a constant efficiency across different momentum ranges and detector regions, as detailed in Ref. [35]. The track-based isolation uses a cone size of AR = 0.4 and the calorimeter-based isolation uses a cone size of AR = 0.2. The actual isolation requirements range between 2.5 GeV and 4.5 GeV for the calorimeter-based isolation and between 2.0 GeV and 3.0 GeV for the track-based isolation. For muon candidates, the scalar sum of the transverse momenta of tracks within a

cone of size AR = 0.2 around the leading muon had to be less than 10 % of its transverse momentum.

Reconstructed W candidates were required to have exactly one selected lepton. The missing transverse momentum in the event had to have a magnitude ET"ss greater than 25 GeV, and the transverse mass mj had to be greater than 40 GeV. The magnitude and azimuthal direction of the missing transverse momentum are measured from the vector sum of the transverse momenta of calibrated physics objects and additional soft calorimeter deposits [36]. Reconstructed Z candidates were required to have exactly two selected leptons of the same flavour with opposite charge. Their invariant mass mtt had to be in the range 66 < mu < 116 GeV and the leptons had to be separated by ARtt > 0.2.

Jets were reconstructed using the anti-^ algorithm [37] with a distance parameter R = 0.4 on topological clusters of energy in the calorimeters [38]. Jets were required to have a transverse momentum above 30 GeV and a rapidity of \ y\ < 4.4. Jets within A R = 0.5 of a selected lepton were removed. The energy and the direction of reconstructed jets were corrected to account for the point of origin, assumed to be the primary vertex, and for the bias introduced by the presence of additional pp interactions in the same bunch crossing ("pile-up"). The jet energy was then calibrated to account for the different response of the calorimeters to electrons and hadrons and for energy losses in un-instrumented regions by applying correction factors derived from simulations. A final calibration, derived from in-situ techniques using Z+jet balance, y +jet balance and multi-jet balance, was applied to the data to reduce residual differences between data and simulations [39].

In order to reject jets from pile-up, a jet selection was applied based on the ratio of the summed scalar pT of tracks originating from the primary vertex and associated with the jet to the summed pT of all tracks associated with the jet. Jets were selected if this ratio was above 0.75. This criterion was applied to jets within \n\ < 2.4, so that they are inside the inner tracker acceptance. Comparison between data and simulation for various data periods confirmed that the residual impact of pile-up on the distribution of the jet observables in this analysis is well modelled by the simulation.

The numbers of W + jets and Z + jets candidate events in the electron and muon channels for each jet multiplicity are shown in Tables 3 and 4, together with the corresponding numbers of predicted events. The expected fraction of predicted events from signal and each background source, determined as described in the next section, is also shown.

5 Background estimation

Background processes to W and Z boson production associated with jets can be classified into three categories. The

Table 3 The contribution of signal and background from various jet multiplicity Njets together with the total numbers of expected and sources, expressed as a fraction of the total number of expected events observed events for the W(^ ev) + jets and Z (^ ee) + jets selection as a function of

Njets 0 1 2 3 4

Fraction [%] W(^ ev) +jets

W ^ ev 94 78 73 58 37

Z ^ ee 0.30 7.5 6.6 6.8 5.4

tt < 0.1 0.30 3.4 18 46

Multi-jet 4 11 12 11 6.9

Electroweak (without Z ^ ee) 1.9 2.6 3.3 3 1.9

Single top < 0.1 0.30 1.7 3.5 3.9

Total predicted 11 100 000 ± 640 000 1 510 000 ± 99 000 354 000 ± 23 000 89 500 ± 5600 28 200 ± 1400

Data observed 10 878 398 1 548 000 361 957 91 212 28 076

Fraction [%] Z(^ ee) + jets

Z ^ ee 100 99 96 93 90

W ^ ev < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

tt < 0.1 0.20 1.9 4.6 7.8

Multi-jet 0.20 0.20 0.40 0.50 0.50

Electroweak (without W ^ ev) 0.10 0.50 1.3 1.4 1.2

Single top < 0.1 < 0.1 0.10 0.20 0.10

Total predicted 754 000 ± 47 000 96 500 ± 6900 22 100 ± 1700 4700 ± 930 1010 ± 93

Data observed 761 280 99 991 22 471 4729 1050

Table 4 The contribution of signal and background from various of jet multiplicity Njets together with the total numbers of expected and sources, expressed as a fraction of the total number of expected events observed events for the W(^ fv) + jets and Z (^ ff) + jets selection as a function

Njets 0 1 2 3 4

Fraction [%] W(^ fv) + jets

W ^ ¡v 93 82 78 62 40

Z ^ /i/i 3.4 3.5 3.5 3 2

tt < 0.1 0.20 3.1 19 46

Multi-jet 1.5 11 10 9.5 6.8

Electroweak (without Z ^ 1.9 2.7 3.4 2.9 1.9

Single top < 0.1 0.20 1.7 3.4 3.8

Total predicted 13 300 000 ± 770 000 1 710 000 ± 100 000 384 000 ± 24 000 96 700 ± 6100 30 100 ± 1600

Data observed 13 414 400 1 758 239 403 146 99 749 30 400

Fraction [%] Z (^ ff) + jets

Z ^ ii 100 99 96 91 84

W ^ ¡v < 0.1 0.10 0.10 0.20 0.20

tt < 0.1 0.30 2.2 6.1 13

Multi-jet 0.30 0.50 0.90 1.1 1.7

Electroweak (without W ^ ¡v) 0.10 0.50 1.3 1.4 1.1

Single top < 0.1 < 0.1 0.10 0.20 0.20

Total predicted 1 300 000 ± 79 000 168 000 ± 12 000 37 800 ± 2800 8100 ± 660 1750 ± 160

Data observed 1 302 010 171 200 38618 8397 1864

first category, referred to as electroweak background, consists of diboson production, vector-boson production with subsequent decay to t-leptons, and "cross-talk" background, in which the signal W + jets (Z + jets) production appears as background in the Z + jets (W + jets) sample. These background contributions are relatively small (about 10 % in the W + jets electron channel, about 6 % in the W + jets muon channel, and about 1 % in Z + jets, as shown in Tables 3 and 4) and were thus estimated using simulated event samples.

The second category consists of events where the leptons are produced in decays of top quarks. The tt component completely dominates the background contribution to W + jets events at high jet multiplicities, amounting to approximately 20 % of the sample with W + > 3 jets and increasing to approximately 45 % for events with four selected jets. The effect is less dramatic in Z + jets events, where the tt background contributes about 5 % to the sample of events with Z + > 3 jets and about 10% to the sample with four jets. The background contribution from single top-quark production is about 4 % of the sample in W + jets events for events with three or four jets, and smaller at lower jet multiplicities. This contribution is even smaller in Z + jets events. Contributions from tt events to W + jets candidates with at least three jets, where this background dominates, were estimated with a data-driven method as described below in order to reduce the overall uncertainty. The tt contributions to W + jets candidates with fewer than three jets and to Z + jets events were estimated using simulated event samples, as are the contributions from single top quarks.

The third category of background, referred to as multi-jet background, comes from events in which hadrons mimic the signature of an isolated lepton. In the electron channel this includes photon conversion processes, typically from the decay of neutral pions, narrow hadronic jets and real electrons from the decay of heavy-flavour hadrons. In the muon channel, the multi-jet background is primarily composed of heavy-flavour hadron decay processes. This background category dominates at low jet multiplicity in W + jets events, amounting to 11 % of the selected sample in both the electron and muon channels for events with one jet. Data-driven techniques were used to estimate this background contribution to both the W + jets and Z + jets candidate events, as described below. The methods employed to estimate background contributions with data-driven techniques in this analysis are very similar between candidate events with W bosons and Z bosons and between electron and muon channels.

5.1 tt background

The tt background is the dominant background contribution to W + jets events with at least three jets, since each top quark predominantly decays as t ^ Wb. The size of the tt contri-

bution was estimated with a maximum-likelihood fit to the data.

The tt template in this fit was derived from a top-quark-enhanced data sample by requiring, in addition to the selection criteria given in Table 2, at least one fe-tagged jet in the event, as determined by the MV1 fe-tagging algorithm of Ref. [40]. The chosen MV1 algorithm working point has a fe-tagging efficiency of 70 %. This data sample is contaminated with W signal events and electroweak and multi-jet backgrounds, amounting to about 40 % in events with three jets and 25 % in events with four jets. The contribution from W signal events and electroweak background was estimated using simulation. The multi-jet contribution to the top-enriched sample was estimated using the multi-jet background estimation method as outlined in the last part of this section, but with an additional fe-tagging requirement. Potential biases in the tt templates extracted from data were investigated using simulated tt events. Since fe-tagging is only available for jets within \n\ < 2.4 where information from the tracking detectors exists, the fe-tagging selection biases some of the kinematic distributions, most notably the jet rapidity distribution. To account for this, ALPGEN tt simulations were used to correct for any residual bias in the differential distributions; the maximum correction is 30 %.

The number of tt events was extracted by fitting a discriminant distribution to the sum of three templates: the top-enriched template after subtracting the contaminations discussed above, the multi-jet template (determined as described below) and the template obtained from simulation of the W + jets signal and the other background sources. The chosen discriminant was the transformed aplanarity, given by exp(-8A), where A is the aplanarity defined as 1.5 times the smallest eigenvalue of the normalized momentum tensor of the leptons and all the jets passing the selection [41]. This discriminant provides the best separation between tt and the W + jets signal. The fit to the transformed aplanarity distribution was done in the range 0.0-0.85 in each exclusive jet multiplicity of three or more.

Since the top-enriched sample is a sub-sample of the signal sample, statistical correlation between the two samples is expected. Its size was estimated using pseudo-datasets by performing Poisson variations of the signal and top-enriched samples. To account for this correlation, the uncertainty on the fit was increased by 15 % for events with three jets and about 30 % for events with four jets.

5.2 Multi-jet background

The multi-jet background contribution to the W + jets selected events was estimated with a template fit method using a sample enriched in multi-jet events. The templates of the multi-jet background for the fit were extracted from data, by modifying the lepton isolation requirements in both the

Table 5 Systematic uncertainties in percent on the measured W + jets / Z + jets cross-section ratio in the electron and muon channels as a function of the inclusive jet multiplicity Njets

Njets > 0 > 1 >2 >3 >4

(W ^ ev)/(Z ^ ee)

Electron 0.89 0.92 0.93 0.97 1.0

JES 0.094 2.0 2.0 3.5 5.7

JER 0.25 2.4 3.5 4.3 6.4

E miss 0.19 1.7 1.2 1.2 1.0

tt 0.024 0.23 1.0 4.9 14

Multi-jet 0.81 1.6 1.5 2.2 6.2

Other backgrounds 0.12 0.57 0.58 0.76 1.0

Unfolding 0.20 0.56 0.86 1.2 1.4

Luminosity 0.062 0.26 0.27 0.34 0.44

Total 1.3 4.1 4.8 8.2 18

(W ^ fiv)/(Z ^ ¡x)

Muon 1.1 1.2 1.1 0.86 0.87

JES 0.10 0.84 0.71 1.8 2.6

JER 0.094 1.6 1.8 2.6 4.2

Emiss 0.30 1.0 0.94 0.97 0.99

tt 0.018 0.18 0.87 4.3 12

Multi-jet 0.20 0.60 1.1 1.7 2.7

Other backgrounds 0.21 0.24 0.28 0.42 0.60

Unfolding 0.22 0.59 0.90 1.2 1.2

Luminosity 0.10 0.12 0.11 0.088 0.023

Total 1.2 2.5 3.0 5.9 13

electron and muon channels, in order to select non-isolated leptons. The templates of the signal, the tt background, and the electroweak background were obtained from simulation. These templates were then normalized by a fit to the £7ss distribution after all signal requirements other than the requirement on E\miss were applied.

To select an electron-channel data sample enriched in multi-jet events, dedicated electron triggers based on loose requirements were used (as defined in Ref. [33]), along with additional triggers based on loose electron and jet selection criteria. The background template distributions were built from events for which the identification requirements of the nominal electron selection failed, in order to suppress signal contamination in the template. Candidate electrons were also required to be non-isolated in the calorimeter, i.e. were required to have an energy deposition in the calorimeter in a cone of size AR < 0.3 centred on their direction greater than 20 % of their total transverse energy. This selection results in a data sample highly enriched in jets misidentified as electrons. As the luminosity increased during the course of 2011, the trigger selections were adjusted to cope with the increasing trigger rates. In order to build multi-jet template

distributions that provide a good representation of the pile-up conditions of the selected data sample, these template distributions were extracted from two distinct data periods with high and low pile-up conditions. The background templates extracted from the two different data periods were fitted separately and then combined into an overall multi-jet estimate.

To select the multi-jet sample in the muon channel, muon candidates were required to be non-isolated. The sum of transverse momenta of tracks in a cone of size AR < 0.2 centred on the muon-candidate direction had to be between 10 % and 50 % of the muon transverse momentum. The contamination from W signal events and electroweak and top backgrounds to the multi-jet sample was subtracted using simulation. It amounts to 1.4 % for events with one jet and 4.8 % for events with four jets.

The number of multi-jet background events was obtained for each jet multiplicity in the electron and muon channels by fitting the ET|?iss distribution obtained from the W + jets data candidate events (selected before the application of the ETmiss requirement) to the multi-jet template and a template of signal and electroweak and tt backgrounds derived from simulations. The fit range was chosen to ensure significant contributions from both templates, in order to guarantee fit stability under systematic variations described in Sect. 7. The Emiss distribution was fitted in the range 15 GeV to 80 GeV in the electron channel and in the range 15 GeV to 70 GeV in the muon channel.

The multi-jet background contribution to the Z + jets selected candidates was estimated using a template fit method similar to the procedure used in the W + jets case. In the electron channel, the template distributions for the multi-jet background were constructed from a data sample collected with electron triggers looser than those used for the nominal Z ^ ee selection. Electrons were then required to satisfy the loose offline identification criteria (as defined in Ref. [33]) but fail to meet the nominal criteria. In the muon channel, the multi-jet template distributions for the multi-jet background were obtained from the nominal signal data sample, after relaxing the impact parameter significance requirement applied to Z ^ ¡x events candidates, and selecting events that did not satisfy the isolation criteria applied in the signal selection. The number of multi-jet background events was obtained for each exclusive jet multiplicity by fitting the dilepton invariant mass distribution ma in an extended range, 50 < ma < 140 GeV, excluding the Z-peak region itself, after all other signal requirements were applied. Due to statistical limitations for jet multiplicities greater than two jets, the normalisation factor obtained from the two-jet bin was consistently applied to the templates for higher jet multiplicities. Potential bias in this procedure was accounted for in the systematic uncertainty estimate.

The evaluation of the systematic uncertainties for each background source is explained in Sect. 7.

1.2 1.1 1

0.9 0.8 1.2 1.1 1

0.9 0.8 1.2 1.1 1

0.9 0.8

-1-1-1-1-1-

ATLAS Iv))/(Z(^ l+l")) + jets

anti-kt jets, R=0.4, —.— Data, ÍS=7 TeV, 4.6 fb-1 pT > 30 GeV, |V| < 4.4 —*— BlackHat+SHERPA T —■— ALPGEN+HERWIG

SHERPA _

— - BlackHat+SHERPA

— ALPGEN

■S "5

1.2 1.1 1

0.9 0.8 1.2 1.1 1

0.9 0.8 1.2 1.1 1

0.9 0.8

-1-1-1-1-1-

ATLAS (W(^ Iv))/(Z(^ l+l-)) + jets

anti-kt jets, R=0.4, —.— Data, ÍS=7 TeV, 4.6 fb-1 pT > 30 GeV, |yi| < 4.4 —*— BlackHat+SHERPA T —■— ALPGEN+HERWIG

SHERPA _

— ALPGEN

Fig. 1 The ratio of W + jets and Z + jets production cross sections, Rjets, as a function of exclusive jet multiplicity, Njets, (left) and inclusive jet multiplicity (right). The electron and muon channel measurements are combined as described in the text. Ratios of the Black-Hat+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown in the lower panels. Vertical error bars

show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the BlackHat+SHERPA prediction

SHERPA

Table 6 The ratio of W + jets and Z + jets production cross sections, Kjets, as a function of exclusive jet multiplicity in the phase space defined

in Table 1

Njets ^jets

= 0 11.24 ± 0.01 (stat.) ± 0.11 (syst.)

= 1 8.50 ± 0.02 (stat.) ± 0.24 (syst.)

= 2 8.76 ± 0.05 (stat.) ± 0.30 (syst.)

= 3 8.33 ± 0.10 (stat.) ± 0.44 (syst.)

= 4 7.69 ± 0.21 (stat.) ± 0.70 (syst.)

Table 7 The ratio of W + jets and Z + jets production cross sections, Rjets, as a function of inclusive jet multiplicity in the phase space defined in Table 1

Njets Rjets

> 0 10.90 ± 0.01 (stat.) ± 0.10 (syst.)

> 1 8.54 ± 0.02 (stat.) ± 0.25 (syst.)

> 2 8.64 ± 0.04 (stat.) ± 0.32 (syst.)

> 3 8.18 ± 0.08 (stat.) ± 0.51 (syst.)

> 4 7.62 ± 0.19 (stat.) ± 0.94 (syst.)

6 Corrections for detector effects

The signal event yields were determined by subtracting the estimated background contributions from the data. After background subtraction, the resulting distributions were corrected for detector effects such that distributions at particle level were obtained. The correction procedure based on simulated samples corrects for jet, W and Z selection efficiency, resolution effects and residual mis-calibrations. While W + jets and Z + jets events were separately corrected before forming Rjets, the systematic uncertainties were estimated for the ratio itself, as explained in the next section.

At particle level, the lepton kinematic variables in the MC-generated samples were computed using final-state leptons from the W or Z boson decay. Photons radiated by the boson decay products within a cone of size AR = 0.1 around the direction of a final-state lepton were added to the lepton, and the sum is referred to as the "dressed" lepton. Particle-level jets were identified by applying the anti-kt algorithm with R = 0.4 to all final-state particles with a lifetime longer

2 1.8 1.6 1.4

I 1 1 1 1 I 1

- ATLAS

- anti-k, jets, R=0.4, L PT > 30 GeV, jy1! < 4.4

1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 lv))/(Z(^ l+l-)) + 1 jet Data, i/s=7 TeV, 4.6 fb" BlackHat+SHERPA ALPGEN+HERWIG SHERPA

1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 ATLAS (W(^ lv))/(Z(^ l+l-)) + > 1 jet

anti-kj jets, R=0..4, —•— Data, is=7 TeV, 4.6 fb-1 pT > 30 GeV, jyjj < 4.4 —*— BlackHat+SHERPA _ t ALPGEN+HERWIG

50 100 150 200 250 300 350 400 450 Pt (leading jet) [GeV]

100 200 300 400 500 600 700 pjT (leading jet) [GeV]

Fig. 2 The ratio of W + jets and Z + jets production cross sections, jts, normalized as described in the text versus the leading-jet transverse momentum, pT, for Njets = 1 (left) and Njets > 1 (right). The electron and muon channel measurements are combined as described in the text. Ratios of the BlackHat+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown in the lower

panels. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the Black-Hat+SHERPA prediction

than 30 ps, whether produced directly in the proton-proton collision or from the decay of particles with shorter lifetimes. Neutrinos, electrons, and muons from decays of the W and Z bosons, as well as collinear photons included in the "lepton dressing procedure" were excluded by the jet reconstruction algorithm. The phase-space requirements match the selection criteria defining the data candidate events, as presented in Table 2, in order to limit the dependence of the measurement results on theoretical assumptions.

The correction was implemented using an iterative Baye-sian method of unfolding [42]. Simulated events are used to generate for each distribution a response matrix to account for bin-to-bin migration effects between the reconstruction-level and particle-level distributions. The Monte Carlo particle-level prediction is used as initial prior to determine a first estimate of the unfolded data distribution. For each further iteration, the previous estimate of the unfolded distribution is used as a new input prior. Bin sizes in each distribution were chosen to be a few times larger than the resolution of the corresponding variable. The ALPGEN W + jets and Z + jets samples provide a satisfactory description of distributions in data and were employed to perform the correction procedure. The number of iterations was optimized to find a

balance between too many iterations, causing high statistical uncertainties associated with the unfolded spectra, and too few iterations, which increase the dependency on the Monte Carlo prior. The optimal number of iterations is typically between one and three, depending on the observable. Since the differences in the unfolded results are negligible over this range of iterations, two iterations were used consistently for unfolding each observable.

7 Systematic uncertainties

One of the advantages of measuring Rjets is that systematic uncertainties that are positively correlated between the numerator and denominator cancel at the level of their correlations (higher correlations result in larger cancellations). The impact on the ratio of a given source of uncertainty was estimated by simultaneously applying the systematic variation due to this source to both the W + jets and Z + jets events and repeating the full measurement chain with the systematic variations applied. This included re-estimating the data-driven background distributions after the variations had been applied.

1.6 1.4 1.2 1

0.8 0.6 0.4

1.3 1.2 1.1 1

0.9 0.8

1.3 1.2 1.1 1

0.9 0.8

" anti-kt jets, R=0.4, L PJT > 30 GeV, |yj| < 4.4

lv))/(Z(^ l+l-)) + > 2 jet —Data, lii=7 TeV, 4.6 fb-1 t BlackHat+SHERPA _ —■— ALPGEN+HERWIG —i— SHERPA

BlackHat+SHERPA

100 200 300 400 500

PT (leading jet) [GeV]

">3 1.8

anti-kt jets, R=0.4, L PT > 30 GeV, |yj| < 4.4

(W(^ lv))/(Z(^ l+l-)) + > 3 jet Я Data, ß=7 TeV, 4.6 fb-1 t BlackHat+SHERPA _ —■— ALPGEN+HERWIG SHERPA

1.3 1.2 1.1 1

0.9 0.8

1.3 1.2 1.1 1

0.9 0.8

40 60 80 100 120 140 160 180 200 pT (leading jet) [GeV]

Fig. 3 The ratio of W + jets and Z + jets production cross sections, Rjets, normalized as described in the text versus the leading-jet transverse momentum, pT, for Njets > 2 (left) and > 3 (right). The electron and muon channel measurements are combined as described in the text. Ratios of the BlackHat+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown in the lower

panels. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the Black-Hat+SHERPA prediction

ALPGEN

SHERPA

Since the uncertainties were found to be symmetric within the statistical fluctuations, the resulting systematic uncertainties on the Rjets measurements were fully symmetrized by taking the average value of the upwards and downwards variations.

Uncertainty sources affecting the Rjets measurements can be assigned to one of the following categories: jet measurements, lepton measurements, missing transverse momentum measurement, unfolding procedure, data-driven background estimates and simulation-based background estimates. These sources of uncertainty feature significant correlations between W + jets and Z + jets processes, which have been fully accounted for as explained above. The systematic uncertainties on the ttt and multi-jet background estimates were considered to be uncorrelated between the W + jets and Z + jets selections. The uncertainty on the integrated luminosity was propagated through all of the background calculations and treated as correlated between W + jets and Z + jets so that it largely cancels in the ratio. The contributions from each of the sources mentioned above and the total systematic uncertainties were obtained by adding in quadrature the different components, and are summarized in Table 5. The total

uncertainty on Rjets as a function of the inclusive jet multiplicity ranges from 4 % for Njets > 1 to 18 % for Njets > 4 in the electron channel and from 3 % for Ajets > 1 to 13 % for Njets > 4 in the muon channel.

Jet-related systematic uncertainties are dominated by the uncertainty on the jet energy scale (JES) and resolution (JER). The JES uncertainty was derived via in-situ calibration techniques, such as the transverse momentum balance in Z + jets, multi-jet and y -jet events, for which a comparison between data and simulation was performed [39]. The JER uncertainty was derived from a comparison of the resolution measured in dijet data events using the bisector method [38], and the same approach was applied to simulated dijet events. The JER and JES uncertainties are highly correlated between W + jets and Z + jets observables and are thus largely suppressed compared to the individual measurements. They are nevertheless the dominant systematic uncertainties in the cases where there are one or two jets in the events. The cancellation is not perfect because any changes in JES and JER are consistently propagated to the ETmiss measurement event-by-event. This causes larger associated migrations for the W selection than for the Z selection. In addition, the level of

IS 1.8 1.6 d 1.4

и 1 3

га Q 1.2 11

О ^ 0.9

и 1 3

га 1 2

а 1 1

о 0 9

:> 0.8

га 1.3

га 1 2

О 0 9

:> 0.8

~ anti-kt jets, R=0.4, _ PT > 30 GeV, |yi| < 4.4

(W(^ lv))/(Z(^ l+Г)) + > 2 jet —Data, ^=7 TeV, 4.6 fb-1

t BlackHat+SHERPA —■— ALPGEN+HERWIG ~ —*— SHERPA

BlackHat+SHERPA

- SHERPA

100 200 300 400 500

PT (2nd leading jet)[GeV]

> 1.8 1.6 P 1.4

га 1 3

га Q 1.2 11

О ^ 1 0.9

и 1 3

га 1 2

а 1 1

о 0 9

:> 0.8

га 1.3

га 1 2

О 0 9

:> 0.8

~ anti-kt jets, R=0.4, _ pJ > 30 GeV, |yj| < 4.4

(W(^ V))/(Z(^ l+l)) + > 3 jet —Data, is=7 TeV, 4.6 fb-1

t BlackHat+SHERPA —■— ALPGEN+HERWIG —*— SHERPA

BlackHat+SHERPA

40 60 80 100 120 140 160 180 200 PT (3rd leading jet) [GeV]

Fig. 4 The ratio of W + jets and Z + jets production cross sections, Rjets, normalized as described in the text versus the second-leading-jet transverse momentum, pT, for Njets > 2 (left) and versus the third-leading-jet pt for Njets > 3(right). The electron and muon channel measurements are combined as described in the text. Ratios of the Black-Hat+SHERPA NLO calculation and the ALPGEN and SHERPA gen-

erators to the data are shown in the lower panels. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the BlackHat+SHERPA prediction

background in the W + jets sample is larger, resulting in a larger jet uncertainty compared to the Z + jets selection. The sum of JER and JES uncertainties on the Rjets measurement ranges from 3 % to 8 % in the electron channel and from 2 % to 5 % in the muon channel as Njets ranges from 1 to 4. The difference between the two channels is due to the fact that the Z ^ ee background in the W ^ ev data sample is much larger than the corresponding Z ^ ¡i background in the W ^ iv sample, being about 7 % for candidate events with one jet in the electron channel compared to 3 % in the muon channel. The Z ^ ee background contaminates the W ^ ev sample because one electron can be misidentified as a jet, contributing to the JES and JER uncertainties. This contribution to the uncertainties does not cancel in Rjets.

The uncertainty on the electron and muon selections includes uncertainties on the electron energy or muon momentum scale and resolution, as well as uncertainties on the scale factors applied to the simulations in order to match the electron or muon trigger, reconstruction and identification efficiencies to those in data. Any changes in lepton energy scale and resolution were consistently propagated

to the ETmiss measurement. The energy- or momentum-scale corrections of the leptons were obtained from comparison of the Z-boson invariant mass distribution between data and simulations. The uncertainties on the scale factors have been derived from a comparison of tag-and-probe results in data and simulations [33,34]. Each of these sources of uncertainty is relatively small in the Rjets measurement (about 1% for Njets ranging from 1 to 4 in both channels).

The uncertainties in £.miss due to uncertainties in JES, JER, lepton energy scale and resolution were included in the values quoted above. A residual £.miss uncertainty accounts for uncertainties on the energy measurement of clusters in the calorimeters that are not associated with electrons or jets. It was determined via in-situ measurements and comparisons between data and simulation [43]. These systematic uncertainties affect only the numerator of the ratio because no ETmiss cut was applied to Z+ jets candidate events. The resulting uncertainty on the Rjets measurement is about 1 % for Njets ranging from 1 to 4 in both channels.

The uncertainty on the unfolding has a component of statistical origin that comes from the limited number of events

2 1.8 1.6 1.4 1.2 1

0.8 0.6 0.4

ATLAS Iv))/(Z(^ l+l-)) + 2 jet

" anti-k, jets, R=0.4, —Data, ii=7 TeV, 4.6 fb-1

p1 > 30 GeV, ly1! < 4.4 —▼— BlackHat+SHERPA " T —■— ALPGEN+HERWIG "

—t— SHERPA

s. 1.6

100 200 300 400 500 600 700 800 900 1000

ST [GeV]

Fig. 5 The ratio of W + jets and Z + jets production cross sections, jts, normalized as described in the text versus the scalar sum pj of jets, St, for Njets = 2 (left) and > 2 (right). The electron and muon channel measurements are combined as described in the text. Ratios of the BlackHat+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown in the lower pan-

ATLAS (W(^ Iv))/(Z(^ l+l-)) + > 2 jet

anti-k jets, R=0.4, —•— Data, ii=7 TeV, 4.6 fb-1 1. p > 30 GeV, |yj < 4.4 —»— BlackHat+SHERPA _ t —■— ALPGEN+HERWIG

—t— SHERPA

0.8 0.6 0.4

i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i

BlackHat+SHERPA

100 200 300 400 500 600 700 800 900 1000

ST [GeV]

els. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the Black-Hat+SHERPA prediction

ALPGEN

SHERPA

in each bin of the Monte Carlo inputs. This component was estimated from the root mean square of Rjets measurements obtained in a large set of pseudo-data generated independently from the W + jets and Z + jets Monte Carlo samples used to unfold the data. The Monte Carlo modelling uncertainty in the unfolding procedure was estimated using an alternative set of ALPGEN samples for which the nominal W + jets and Z + jets production was modelled by different theoretical parameter values. The MLM matching procedure [44], employed to remove the double counting of partons generated by the matrix element calculation and partons produced in the parton shower, uses a matching cone of size R = 0.4 for matrix element partons of pT > 20 GeV. To determine how the choice of this cone size and the matching pT scale impact the unfolded results, samples with variations of these parameters were used in the unfolding procedure. In addition, to account for the impact of changing the amount of radiation emitted from hard partons, ALPGEN Monte Carlo samples were generated with the renormalisation and factorisation scales set to half or twice their nominal value of fV+pTV, where V is the W or Z boson depending on the sample. The systematic uncertainty is the sum in quadra-

ture of the differences with respect to the Rjets measurement obtained from the nominal samples. The overall uncertainty on the unfolding procedure ranges between 0.6 % and 1.4 % for Njets ranging from 1 to 4.

For backgrounds estimated using simulation, the uncertainty on the cross-section calculation was taken into account. The combined impact of these uncertainties on the Rjets measurement is typically less than 1 % for the different jet multiplicities.

For tt predictions taken from the ALPGEN sample, the uncertainty on the cross-section calculation is considered, as well as a shape uncertainty by comparing to the POWHEG-BOX tt sample. The largest contribution to the total uncertainty from the data-driven tt estimate is from the statistical uncertainty on the fit. The systematic uncertainty on the data-driven tt estimate also covers uncertainties on the contamination of the background template by signal events, on the choice of fit range and other small uncertainties. The latter include the uncertainties on the b-tagging efficiencies and uncertainties on the bias in the tt distributions when applying the b-tagging. The uncertainty on the contribution from W + heavy-flavour events to the tt template, modelled

1.6 1.4 1.2

0.S 0.6

1.3 1.2 1.1 1

1.3 1.2 1.1 1

1.3 1.2 1.1 1

1 i 11 11 i 1 ATLAS

11 11 1 11 1 i1 11 1 i1 1 11 i1 1 11 i 11 11 i 11 1 (W(^ Iv))/(Z(^ l+l-)) + 3 jet anti-kt jets, R=0..4, —•— Data, iis=7 TeV, 4.6 fb-1 pT > 30 GeV, y < 4.4 —*— BlackHat+SHERPA _ T —■— ALPGEN+HERWIG

—à— SHERPA

BlackHat+SHERPA

2 1.S £ 1.6 1.4

-S "to О

100 200 300 400 500 600 700 SGG 90O 1000

ST [GeV]

anti-kt jets, R=0.4, L p > 30 GeV, iVl < 4.4

0.S 0.6

1.3 1.2 1.1 1

0.9 0.S

1.3 1.2 1.1 1

1.3 1.2 1.1 1

m 1 11 1 i1 1 ATLAS

I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1

(W(^ Iv))/(Z(^ l+l-)) + s 3 jet

Data, ß=7 TeV, 4.6 fb-1 BLACKHAT+SHERPA ALPGEN+HERWIG SHERPA

i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i i i i I i

BlackHat+SHERPA

MUttrtt^f^ f

SHERPA

100 200 300 400 500 600 700 SGG 900 1000

ST [GeV]

Fig. 6 Rjets normalized as described in the text versus the scalar sum p. of jets, St for Njets = 3 (left) and > 3 (right). The electron and muon channel measurements are combined as described in the text. Ratios of the BlackHat+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown in the lower panels. Vertical error bars show the respective statistical uncertainties.

The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the Black-Hat+SHERPA prediction

by ALPGEN Monte Carlo samples, was evaluated by varying the W+c cross section and the combined W+cc and W+bb cross sections. The size of the variations is a factor of 0.9 and 1.3 respectively. These factors were obtained from fits to the data in two control regions, defined as one or two jets and at least one b-tagged jet. This uncertainty, which is 3 % of the number of tt events for Njets > 3, is largest at lower jet multiplicities where the contribution from W+heavy flavour is most significant. The upper limit of the fit range in transformed aplanarity was varied from the nominal values of 0.85 to 0.83 or 0.87. The tt uncertainty dominates for final states with high jet multiplicity due to its increasing contribution, which does not cancel in Rjets. It amounts to an uncertainty of 14 % on the Rjets measurement in the electron channel and to an uncertainty of 12 % in the muon channel for events with at least four jets.

In the evaluation of the multi-jet background systematic uncertainties, various sources were taken into account. For the W+jets selection, the uncertainty on the shape of the template distributions of the multi-jet background was studied by varying the lepton isolation requirement and identifica-

tion definition. The nominal template fit range for ETmiss was also varied, within 10 GeV up and down from the nominal limits. The distributions of the signal template were alternatively modelled by SHERPA instead of ALPGEN and the difference was taken as an uncertainty. The statistical uncertainty on the template normalisation factor from the fit was also included. Finally, to evaluate the uncertainty on the estimate of the multi-jet background to the Z + jets events, the fit ranges and the modelling of the signal and of the electroweak contamination were varied in the same way as for the W + jets events. The combined impact of these uncertainties on the Rjets measurement varies between 2 % and 6 % in the electron channel and between 1 % and 3 % in the muon channel for Njets ranging from 1 to 4.

8 Combination of electron and muon channels

In order to increase the precision of the W + jets to Z + jets differential cross-section ratio measurements the results obtained for each observable in the electron and the muon

2 1.8 1.6 1.4 1.2 1

0.8 0.6

1.3 1.2 1.1 1

0.9 0.8

1.3 1.2 1.1 1

0.9 0.8

1.3 1.2 1.1 1

0.9 0.8

ATLAS (W(^ Iv))/(Z(^ l+l-)) + > 2 jet

" anti-kj jets, R=0.4, Data, TeV, 4.6 fb-1

p > 30 GeV, lyj < 4.4 —T— BlackHat+SHERPA " t —■— ALPGEN+HERWIG

—*— SHERPA

BlackHat+SHERPA

ALPGEN

Fig. 7 The ratio of W + jets and Z + jets production cross sections, Rjets, normalized as described in the text versus the dijet angular separation, ARjj (left) and the distance in 0, A0j1j2, (right) for Njets > 2. The electron and muon channel measurements are combined as described in the text. Ratios of the BlackHat+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown

.S ro Q

f 1.6 N

£ 1.4

0.8 0.6

1.3 1.2 1.1

0.9 0.8

1.3 1.2 1.1

0.9 0.8

1.3 1.2 1.1

0.9 0.8

ATLAS (W(^ lv))/(Z(^ l+l-)) + > 2 jet

" anti-k jets, R=0.4, —•— Data, iis=7 TeV, 4.6 fb-1

p > 30 GeV, |yj < 4.4 —*— BlackHat+SHERPA " t —ALPGEN+HERWIG

—*— SHERPA

BlackHat+SHERPA

in the lower panels. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the BlackHat+SHERPA prediction

channels were statistically combined, accounting for correlations between the sources of systematic uncertainties affecting each channel. Since the electron and muon measurements were performed in different fiducial regions, bin-by-bin correction factors, estimated using ALPGEN Monte Carlo samples, were applied to each measured distribution to extrapolate the measurements to the common phase space defined in Table 1. The corrections to the Rjets measurement are of the order of 6 % in the electron channel and 1 % in the muon channel. The uncertainties on the acceptance corrections are below 0.5 %, as determined by using SHERPA instead of ALPGEN. By comparing distributions computed at LO and NLO, it was checked with MCFM that NLO effects on the extrapolation to the common phase space are negligible. Before the combination was performed, the individual results of the two channels were compared to each other after extrapolation; the results are compatible within their respective uncertainties.

The method of combination used is an averaging procedure described in Refs. [45,46]. The distributions for each observable were combined separately by minimising a x2 function which takes into account the results in the extrapo-

lated electron and muon channels and all systematic uncertainties on both channels. The uncertainties on the modelling in the unfolding procedure, the integrated luminosity, the background contributions estimated from simulations except for Z + jets and W + jets backgrounds and systematic uncertainties on the data-driven tt estimation were treated as correlated among bins and between channels. The lepton systematic uncertainties were assumed to be correlated between bins of a given distribution, but uncorrelated between the two lepton channel measurements. The statistical uncertainties of the data, the statistical uncertainty of the unfolding procedure, and the statistical uncertainty of the tt fit were treated as uncorrelated among bins and channels. The systematic uncertainties on multi-jet backgrounds, which contain correlated and uncorrelated components, are also treated as uncorrelated among bins and channels. This choice has little impact on the final combined results and was chosen as it is slightly more conservative in terms of the total uncertainty of the combined results. Finally, the uncertainties from the jet energy scale, the jet energy resolution, the ETmiss calculation and the Z + jets and W + jets background contributions were treated as fully correlated between all bins and do not enter

1.8 tN 1.6

"B 1.4 E "d

cR 0.8 " 0.6 0.4

.2 1.3

(0 1.2

D 1.1 1

.2 1.3

TO 1.2

D 1.1 1

0 100 200 300 400 500 600 700 800 900 1000

m12 [GeV]

Fig. 8 The ratio of W + jets and Z + jets production cross sections, Rjets, normalized as described in the text versus the dijet invariant mass, m12, for Njets > 2. The electron and muon channel measurements are combined as described in the text. Ratios of the BlackHat+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown in the lower panels. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the BlackHat+SHERPA prediction

into the combination procedure to avoid numerical instabilities due to the statistical component in these uncertainties. For the combined results, each of these uncertainties was taken as the weighted average of the corresponding uncertainty on the electron and muon measurements, where the weights are the inverse of the sum in quadrature of all the uncorrelated uncertainties that entered in the combination.

9 Theoretical predictions

The measured distributions of all the observables considered in the analysis are compared at particle level to various pQCD predictions in the phase space defined in Table 1.

Next-to-leading-order pQCD predictions were calculated with BlackHat+SHERPA [47-49] at parton level for various parton multiplicities, from zero to four. In this calculation BlackHat is used for the computation of the virtual one-loop matrix elements, while SHERPA is used for the real emission part and the phase-space integration. The fixed-

order calculation is performed at parton level only, without radiation andhadronization effects. Renormalisation and factorisation scales were evaluated at HT/2, where HT is defined as the scalar sum of the transverse momenta of all stable particles in each event. The PDF set used was CT10 [17]. Partons were clustered into jets using the anti-kt algorithm with R = 0.4.

The effect of uncertainties on the prediction has been computed for Rjets, accounting for correlation between the individual W + jets and Z + jets processes. The uncertainties on the theoretical predictions are significantly reduced in this procedure, with the statistical uncertainty on the samples often dominating.

Uncertainties on the renormalisation and the factorisation scales were evaluated by varying these scales independently to half and twice their nominal value. The PDF uncertainties were computed from the CT10 eigenvectors, derived with the Hessian method at 68 % confidence level [17]. The changes in Rjets due to these PDF variations were combined and used as the uncertainty. In addition, the nominal value of the strong coupling constant, as = 0.118, was varied by ±0.0012, and the impact of this variation was taken into account in the PDF uncertainty. All the uncertainty components mentioned above were then added in quadrature. The total systematic uncertainty on the prediction ranges from 0.3 % to 1.8 % for inclusive jet multiplicities ranging from one to four, and from 2 % to 6 % for leading-jet pT ranging from 30 GeV to 700 GeV.

In order to compare the BlackHat+SHERPA parton-level predictions with the measurements at particle level, a set of non-perturbative corrections was applied to the predictions. Corrections for the underlying event (UE) were calculated using samples generated with ALPGEN+HERWIG+ JIMMY. The ratio of samples where the UE has been switched on and off was evaluated in each bin of each distribution. Corrections for the hadronization of partons to jets were computed using similar samples by forming the ratio of distributions obtained using jets clustered from hadrons versus jets clustered from partons. In Rjets, the hadronization and UE corrections have opposite signs and are quite small (typically 2 % to 3 % for the exclusive jet multiplicity), so the overall correction factor is close to unity. Additional ALP-GEN+PYTHIA samples were used to estimate the uncertainties due to these non-perturbative corrections, which are typically well below 1 %.

Finally, corrections for QED final-state radiation were calculated as the ratio of Rjets derived from "dressed" leptons to Rjets defined before any final-state photon radiation, using ALPGEN samples interfaced to PHOTOS. These corrections range between 1 % and 2 % for both the electron and the muon channel. Systematic uncertainties were derived by comparing with corrections obtained using SHERPA, which calculates final-state QED radiation using the YFS method [50]. The

" anti-kj jets, R=0.4, _PT > 30 GeV, |yj| < 4.4

(W(— lv))/(Z(—> +-)) + > 2 jet —Data, ii=7 TeV, 4.6 fb-T BlackHat+SHERPA _ —ALPGEN+HERWIG —4— SHERPA

BlackHat+SHERPA

ALPGEN

SHERPA

|yj| (leading jet)

Fig. 9 The ratio of W + jets and Z + jets production cross sections, Rjets, normalized as described in the text versus the leading-jet rapidity, yj for Njets > 1 (left) and second-leading-jet y for Njets > 2 (right). The electron and muon channel measurements are combined as described in the text. Ratios of the BlackHat+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown in the lower

|yj| (2nd leading jet)

panels. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the Black-Hat+SHERPA prediction

differences between the predictions are typically well below 1 %.

Tree-level multi-leg matrix element calculations matched to parton showering algorithms were obtained from the ALPGEN and SHERPA generators. These calculations use different PDF sets, matching procedures, parton shower evolution, and hadronization and multi-parton interaction modelling, as detailed in Sect. 3. Only statistical uncertainties were considered for these predictions, which are compared with the BlackHat+Sherpa calculations and the data in Sect. 10.

10 Results and discussion

The theoretical predictions described in Sect. 9 are compared to the experimental data unfolded to particle level, as defined in Sect. 6. Individual ratios of the BlackHat+SHERPA, ALPGEN, and SHERPA predictions to unfolded data make it possible to disentangle the important features of each theoretical prediction. The Rjets results highlight the ability of these Monte Carlo programs to model the differences between Z + jets and W + jets processes.

Figure 1 shows Rjets as a function of exclusive and inclusive jet multiplicity. The values are detailed in Tables 6 and 7, respectively.5 The theoretical predictions describe the data fairly well, given the experimental uncertainties, with few exceptions. At high jet multiplicities, where the effects of hard QCD radiation are tested, the SHERPA prediction is about 1.5 standard deviations (1.5a ) of the experimental error greater than the measurement. BlackHat+SHERPA is able to describe Rjets measured as a function of exclusive jet multiplicity, within the theoretical uncertainties, although it is about 1a greater than the measurement at high inclusive jet multiplicities; this is expected since it does not include all contributions for events with at least four jets.

In the following figures, Rjets is normalized to the ratio of the W and Z cross sections in the corresponding jet multiplicity bin presented in Fig. 1, so that the shapes of the distributions can be compared. Figure 2 shows the Rjets ratio versus the leading-jet pT for Njets = 1 and Njets > 1. At low transverse momentum (pT < 200 GeV), the Rjets distribution

5 Tabulated values of the results are also available in the Durham Hep-Data Project: http://hepdata.cedar.ac.uk.

13 1.6

IT™ 1

to Q 1.2 1.1

O ^ 0.9

ra 1.3

(0 1 2

TO 1.3

to 1 2

" anti-k, jets, R=0.4, _pJT > 30 GeV, jj/j < 4.4

V))/(Z(^ l+l-)) + > 3 jet —•— Data, fs=7 TeV, 4.6 fb-1 —t— BlackHat+SHERPA _ —■— ALPGEN+HERWIG —i— SHERPA

0 0.5 1 1.5 2

2.5 3 3.5 4 jy'j (3rd leading jet)

Fig. 10 The ratio of W + jets and Z + jets production cross sections, Rjets, normalized as described in the text versus the third-leading-jet rapidity, yj, for Njets > 3. The electron and muon channel measurements are combined as described in the text. Ratios of the Black-Hat+SHERPA NLO calculation and the ALPGEN and SHERPA generators to the data are shown in the lower panels. Vertical error bars show the respective statistical uncertainties. The hatched error band shows statistical and systematic uncertainties added in quadrature for the data. The solid error bands show the statistical uncertainties for the ALPGEN and SHERPA predictions, and the combined statistical and theoretical uncertainties for the BlackHat+SHERPA prediction

falls as the leading-jet pT increases, indicating that the shapes in W + jets and Z + jets events are different. This is due to the W and Z boson mass difference, which affects the scale of the parton radiation, and the different vector-boson polarizations, which affect the kinematics of their decay products. In the small region very close to the minimum value of the jet pT considered in the analysis, where radiative parton shower effects play a major role, all of the predicted shapes exhibit trends different from those in the data, but the ALPGEN predictions still show the best agreement.

Figure 3 shows Rjets versus the leading-jet pT for Njets > 2 and Njets > 3.The Rjets distribution falls less steeply the more jets are in the event. This is due to the smaller average vector-boson pT, which reduces the effects arising from differences in boson masses and polarizations. At the lowest pT values considered the comparison with the data shows a tendency for different behaviour of the theoretical predictions, especially in events with at least three jets. The effect, which is most pronounced for BlackHat+SHERPA, is expected in case of

lack of resummation of soft and collinear parton emissions, as in this calculation.

Figure 4 shows Rjets versus the second- and third-leading-jet pT for Njets > 2 and Njets > 3 respectively. The various predictions agree with the data distributions, given the uncertainties, except for small deviations in the second-leading-jet

PT for Njets > 2.

The next kinematic observable studied is ST, the scalar sum of all jet transverse momenta in the event. This observable is often used in searches for new high-mass particles. Figure 5 shows Rjets versus ST for Njets = 2 and Njets > 2, while Fig. 6 shows Rjets versus ST for Njets = 3 and Njets > 3. At the lowest values of ST the predicted distributions are different from the measured distributions, particularly for SHERPA, but in the higher-ST region the theoretical predictions describe the data well. The central value of the fixed-order BlackHat+SHERPA calculation does not reproduce the ST distributions for W + jets and Z + jets separately as well as the inclusive calculation, corroborating the previous observations in Refs. [4,5]. The tensions are due to the missing higher-order contributions which cancel almost completely in Rjets.

Figure 7 shows the separation A Rjj and the azimuthal angular distance A<jy2 between the two leading jets, and Fig. 8 shows their invariant mass m 12 for Njets > 2. At the lowest A Rjj and m 12 values, the predicted shapes differ from the measured ones. This is interpreted as a weak sensitivity to non-perturbative effects enhancing the difference in soft QCD radiation between W and Z events, but not cancelling completely in Rjets.

Figure 9 shows the leading-jet rapidity for Njets > 1, and the second-leading-jet rapidity for Njets > 2, while Fig. 10 shows the third-leading-jet rapidity for Njets > 3. The different trends between predictions at high leading-jet rapidity can be due to the effects of the parton shower and, in some cases, different PDF sets. These effects, which do not cancel completely in Rjets, are moderated by the presence of extra jets.

11 Conclusions

Measurements of the ratio of W + jets to Z + jets production cross sections have been performed by the ATLAS experiment using a data sample of proton-proton collisions corresponding to an integrated luminosity of 4.6 fb-1 collected at a centre-of-mass energy of s/s = 7 TeV at the LHC. The data were unfolded to particle level and compared to predictions from Monte Carlo simulations. By being sensitive to differences between W + jets and Z + jets events, and through large cancellations of experimental systematic uncertainties and non-perturbative QCD effects, the Rjets measurements provide information complementary to individual W + jets

and Z + jets measurements. This Rjets measurement significantly improves on previous results by probing kinematic distributions for the first time in events with jet multiplicity up to four jets. It also allows a detailed comparison with state-of-the-art NLO pQCD Monte Carlo calculations, which agree well with the observed data except in a few specific regions. In particular, the BlackHat+SHERPA predictions for Rjets at high jet multiplicity and large leading-jet momenta are validated with this large dataset and are consistent with the results from tuned event generators. This new measurement highlights the success of recent theoretical advances and the opportunity for further tuning to improve the description of the production of vector bosons in association with jets.

Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, The Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Funded by SCOAP3 / License Version CC BY 4.0.

References

1. E. Abouzaid, H.J. Frisch, Phys. Rev. D 68, 033014 (2003). arXiv:hep-ph/0303088 [hep-ph]

2. ATLAS Collaboration, Phys. Lett B. 708, 221-240 (2012). arXiv:1108.4908 [hep-ex]

3. CMS Collaboration, JHEP 1201, 010 (2012). arXiv:1110.3226 [hep-ex]

4. ATLAS Collaboration, Eur. Phys. J. C. arXiv:1409.8639 [hep-ex] (submitted)

5. ATLAS Collaboration, JHEP 1307, 032 (2013). arXiv:1304.7098 [hep-ex]

6. ATLAS Collaboration, JINST 3, S08003 (2008)

7. M.L. Mangano et al., JHEP 0307, 001 (2003). arXiv:hep-ph/0206293 [hep-ph]

8. G. Corcella et al., JHEP 0101, 010 (2001). arXiv:hep-ph/0011363 [hep-ph]

9. J. Butterworth, J.R. Forshaw, M. Seymour, Z. Phys. C 72, 637-646 (1996). arXiv:hep-ph/9601371 [hep-ph]

10. P. Golonka, Z. Was, Eur. Phys. J. C 50, 53-62 (2007). arXiv:hep-ph/0604232 [hep-ph]

11. J. Pumplin et al., JHEP 0207, 012 (2002). arXiv:hep-ph/0201195 [hep-ph]

12. ATLAS Collaboration, ATL-PHYS-PUB-2011-008 (2011). http:// cdsweb.cern.ch/record/1345343

13. T. Sjöstrand, S. Mrenna, P.Z. Skands, JHEP 0605, 026 (2006). arXiv:hep-ph/0603175 [hep-ph]

14. P.Z. Skands, Phys. Rev. D 82, 074018 (2010). arXiv:1005.3457 [hep-ph]

15. T. Gleisberg et al., JHEP 0902, 007 (2009). arXiv:0811.4622 [hep-ph]

16. S. Hoeche, F. Krauss, M. Schönherr, F. Siegert, JHEP 1304, 027 (2013). arXiv:1207.5030 [hep-ph]

17. H.-L. Lai et al., Phys. Rev. D 82, 074024 (2010). arXiv:1007.2241 [hep-ph]

18. S. Alioli, P. Nason, C. Oleari, E. Re, JHEP 1006, 043 (2010). arXiv:1002.2581 [hep-ph]

19. B.P. Kersevan, E. Richter-Was, Comput. Phys. Commun. 184,919985 (2013). arXiv:hep-ph/0405247 [hep-ph]

20. A. Sherstnev, R. Thorne, Eur. Phys. J. C 55, 553-575 (2008). arXiv:0711.2473 [hep-ph]

21. S. Agostinelli et al., Geant4 Collaboration. Nucl. Instrum. Method A 506, 250-303 (2003)

22. ATLAS Collaboration, Eur. Phys. J. C 70, 823-874 (2010). arXiv:1005.4568 [physics.ins-det]

23. K. Melnikov, F. Petriello, Phys. Rev. D 74, 114017 (2006). arXiv:hep-ph/0609070 [hep-ph]

24. A. Martin, W. Stirling, R. Thorne, G. Watt, Eur. Phys. J. C 63, 189-285 (2009). arXiv:0901.0002 [hep-ph]

25. M. Cacciari et al., Phys. Lett. B 710, 612-622 (2012). arXiv:1111.5869 [hep-ph]

26. P. Bärnreuther, M. Czakon, A. Mitov, Phys. Rev. Lett. 109, 132001

(2012). arXiv:1204.5201 [hep-ph]

27. M. Czakon, A. Mitov, JHEP 1212, 054 (2012). arXiv:1207.0236 [hep-ph]

28. M. Czakon, A. Mitov, JHEP 1301, 080 (2013). arXiv:1210.6832 [hep-ph]

29. M. Czakon, P. Fiedler, A. Mitov, Phys. Rev. Lett. 110, 252004

(2013). arXiv:1303.6254 [hep-ph]

30. M. Czakon, A. Mitov, arXiv:1112.5675 [hep-ph]

31. J.M. Campbell, R.K. Ellis, C. Williams, JHEP 1107, 018 (2011). arXiv:1105.0020 [hep-ph]

32. ATLAS Collaboration, Eur. Phys. J. C 73, 2518 (2013). arXiv:1302.4393 [hep-ex]

33. ATLAS Collaboration, Eur. Phys. J. C 74, 2941 (2014). arXiv:1404.2240 [hep-ex]

34. ATLAS Collaboration, arXiv:1404.4562 [hep-ex] (submitted to Eur. Phys. J. C)

35. ATLAS Collaboration, ATL-PHYS-PUB-2011-006 (2011). http:// cdsweb.cern.ch/record/1345327

36. ATLAS Collaboration, Eur. Phys. J. C 72, 1844 (2012). arXiv:1108.5602 [hep-ex]

37. M. Cacciari, G.P. Salam, G. Soyez, JHEP 0804, 063 (2008). arXiv:0802.1189 [hep-ph]

38. ATLAS Collaboration, Eur. Phys. J. C 73, 2306 (2013). arXiv:1210.6210 [hep-ex]

39. ATLAS Collaboration, JHEP 1405, 059 (2014). arXiv:1312.3524 [hep-ex]

40. ATLAS Collaboration, ATLAS-C0NF-2011-102 (2011). http:// cdsweb.cern.ch/record/1369219

41. ATLAS Collaboration, Phys. Lett. B 711, 244-263 (2012). arXiv:1201.1889 [hep-ex]

42. G. D'Agostini, Nucl. Instrum. Method A 362, 487-498 (1995)

43. ATLAS Collaboration, ATLAS-C0NF-2012-101 (2012). http:// cdsweb.cern.ch/record/1463915

44. J. Alwall et al., Eur. Phys. J. C 53, 473-500 (2008). arXiv:0706.2569 [hep-ph]

45. A. Glazov, AIP Conf. Proc. 792, 237-240 (2005)

46. H1 Collaboration, F. Aaron et al., Eur. Phys. J. C 63, 625-678 (2009). arXiv:0904.0929 [hep-ex]

47. C. Berger et al., Phys. Rev. D 80, 074036 (2009). arXiv:0907.1984 [hep-ph]

48. C. Berger et al., Phys. Rev. D 82, 074002 (2010). arXiv:1004.1659 [hep-ph]

49. C. Berger et al., Phys. Rev. Lett. 106, 092001 (2011). arXiv:1009.2338 [hep-ph]

50. D. Yennie, S.C. Frautschi, H. Suura,Ann. Phys. 13,379-452(1961)

ATLAS Collaboration

G. Aad84, B.Abbott112, J.Abdallah152, S. Abdel Khalek116, O. Abdinov11, R. Aben106, B.Abi113, M. Abolins89 O. S. AbouZeid159, H. Abramowicz154, H. Abreu153, R. Abreu30, Y. Abulaiti147a,147b, B. S. Acharya165a,165b,a L. Adamczyk38a, D. L. Adams25, J. Adelman177, S. Adomeit99, T. Adye130, T. Agatonovic-Jovin13a J. A. Aguilar-Saavedra125a,125f, M. Agustoni17, S. P. Ahlen22, F. Ahmadov64,b, G. Aielli134a,134b, H. Akerstedt147a,147b T. P. A. Äkesson80, G. Akimoto156, A. V. Akimov95, G. L. Alberghi20a,20b, J.Albert170, S. Albrand55 M. J. Alconada Verzini70, M. Aleksa30, I. N. Aleksandrov64, C. Alexa26a, G. Alexander154, G. Alexandre49 T. Alexopoulos10, M. Alhroob165a,165b, G. Alimonti90a, L. Alio84, J.Alison31, B. M. M. Allbrooke18, L.J.Allison71 P. P. Allport73, J. Almond83, A. Aloisio103a,103b, A. Alonso36, F. Alonso70, C. Alpigiani75, A. Altheimer35

B. Alvarez Gonzalez89, M. G. Alviggi103a,103b, K. Amako65, Y. Amaral Coutinho24a, C. Amelung23, D. Amidei88

S. P. Amor Dos Santos125a,125c, A. Amorim125a,125b, S. Amoroso48, N. Amram154, G. Amundsen23, C. Anastopoulos140

L. S.Ancu49, N. Andari30, T. Andeen35, C. F. Anders58b, G.Anders30, K.J.Anderson31, A. Andreazza90a,90b V. Andrei58a, X. S. Anduaga70, S. Angelidakis9, I. Angelozzi106, P. Anger44, A. Angerami35, F. Anghinolfi30 A. V. Anisenkov108,c, N. Anjos125a, A. Annovi47, A. Antonaki9, M. Antonelli47, A. Antonov97, J. Antos145b, F. Anulli133a M. Aoki65, L. Aperio Bella18, R. Apolle119,d, G. Arabidze89, I. Aracena144, Y. Arai65, J. P. Araque125a, A. T. H. Arce45 J.-F. Arguin94, S. Argyropoulos42, M. Arik19a, A. J. Armbruster30, O. Arnaez30, V. Arnal81, H.Arnold48, M. Arratia28 O. Arslan21, A. Artamonov96, G. Artoni23, S. Asai156, N. Asbah42, A. Ashkenazi154, B. Äsman147a,147b, L. Asquith6 K. Assamagan25, R. Astalos145a, M. Atkinson166, N. B. Atlay142, B. Auerbach6, K. Augsten127, M. Aurousseau146b G. Avolio30, G. Azuelos94,e, Y. Azuma156, M. A. Baak30, A. E. Baas58a, C. Bacci135a,135b, H. Bachacou137, K. Bachas155 M. Backes30, M.Backhaus30, J. Backus Mayes144, E. Badescu26a, P. Bagiacchi133a,133b, P. Bagnaia133a,133b, Y. Bai33a T. Bain35, J. T. Baines130, O. K. Baker177, P. Balek128, F. Balli137, E. Banas39, Sw. Banerjee174 , A. A. E. Bannoura176 V. Bansal170, H. S. Bansil18, L. Barak173, S. P. Baranov95, E. L. Barberio87, D. Barberis50a,50b, M. Barbero84 T. Barillari100, M. Barisonzi176, T. Barklow144, N. Barlow28, B. M. Barnett130, R. M. Barnett15, Z. Barnovska5 A. Baroncelli135a, G. Barone49, A.J.Barr119, F. Barreiro81, J. Barreiro Guimaraes da Costa57, R. Bartoldus144 A.E.Barton71, P. Bartos145a, V.Bartsch150, A. Bassalat116, A. Basye166, R.L.Bates53, J. R. Batley28, M. Battaglia138 M. Battistin30, F. Bauer137, H. S. Bawa144f, M. D. Beattie71, T. Beau79, P. H. Beauchemin162, R. Beccherle123a,123b P. Bechtle21, H.P.Beck17, K.Becker176, S.Becker99, M. Beckingham171, C. Becot116, A. J. Beddall19c, A. Beddall19c S. Bedikian177, V. A. Bednyakov64, C.P.Bee149, L. J. Beemster106, T. A. Beermann176, M. Begel25, K. Behr119

C. Belanger-Champagne86, P.J.Bell49, W.H.Bell49, G.Bella154, L. Bellagamba20a, A. Bellerive29, M. Bellomo85 K. Belotskiy97, O. Beltramello30, O. Benary154, D. Benchekroun136a, K. Bendtz147a,147b, N. Benekos166, Y. Benhammou154

E. Benhar Noccioli49, J. A. Benitez Garcia160b, D. P. Benjamin45, J. R. Bensinger23, K. Benslama131, S. Bentvelsen106

D. Berge106, E. Bergeaas Kuutmann16, N. Berger5, F. Berghaus170, J. Beringer15, C. Bernard22, P. Bernat77, C. Bernius78

F. U. Bernlochner170, T. Berry76, P.Berta128, C. Bertella84, G. Bertoli147a,147b, F. Bertolucci123a,123b, C. Bertsche112 D. Bertsche112, M. F. Bessner42, M. I. Besana90a, G. J. Besjes105, O. Bessidskaia147a,147b, N. Besson137, C. Betancourt48 S. Bethke100, W. Bhimji46, R. M. Bianchi124, L. Bianchini23, M. Bianco30, O. Biebel99, S. P. Bieniek77, K. Bierwagen54 J. Biesiada15, M. Biglietti135a, J. Bilbao De Mendizabal49, H. Bilokon47, M. Bindi54, S. Binet116, A. Bingul19c C. Bini133a,133b, C.W.Black151, J.E.Black144, K.M.Black22, D.Blackburn139, R.E.Blair6, J.-B. Blanchard137 T. Blazek145a, I.Bloch42, C. Blocker23, W.Blum82,*, U. Blumenschein54, G. J. Bobbink106, V. S. Bobrovnikov108c S. S. Bocchetta80, A. Bocci45, C. Bock99, C. R. Boddy119, M. Boehler48, J. Boek176, J. Boek176, T. T. Boek176 J. A. Bogaerts30, A. G. Bogdanchikov108, A. Bogouch91,*, C. Bohm147a,J. Bohm126, V. Boisvert76,T. Bold38a,V. Boldea26a A. S. Boldyrev98, M. Bomben79, M. Bona75, M. Boonekamp137, A. Borisov129, G. Borissov71, M. Borri83, S. Borroni42

J. Bortfeldt99, V. Bortolotto135a'135b, K. Bos106, D. Boscherini20a, M. Bosman12, H. Boterenbrood106, J. Boudreau124 J. Bouffard2, E. V. Bouhova-Thacker71, D. Boumediene34, C. Bourdarios116, N. Bousson113, S. Boutouil136d

A. Boveia31, J. Boyd30, I. R. Boyko64, I. Bozic13a, J. Bracinik18, A. Brandt8, G. Brandt15, O. Brandt58a, U. Bratzler157

B. Brau85, J. E. Brau115, H.M.Braun176,*, S. F. Brazzale165a,165c, B. Brelier159, K. Brendlinger121, A. J. Brennan87 R.Brenner167, S. Bressler173, K. Bristow146c, T. M. Bristow46, D. Britton53, F. M. Brochu28, I. Brock21, R. Brock89

C. Bromberg89, J. Bronner100, G. Brooijmans35, T. Brooks76, W. K. Brooks32b, J. Brosamer15, E. Brost115, J. Brown55 P. A. Bruckman de Renstrom39, D. Bruncko145b, R. Bruneliere48, S. Brunet60, A. Bruni20a, G. Bruni20a, M. Bruschi20a L. Bryngemark80, T. Buanes14, Q. Buat143, F. Bucci49, P. Buchholz142, R.M.Buckingham119, A.G.Buckley53 S. I. Buda26a, I. A. Budagov64,F. Buehrer48,L. Bugge118, M. K. Bugge118, O. Bulekov97, A. C. Bundock73, H. Burckhart30 S. Burdin73, B. Burghgrave107, S. Burke130, I. Burmeister43, E. Busato34, D. Büscher48, V. Büscher82, P. Bussey53

C. P. Buszello167, B. Butler57, J. M. Butler22, A. I. Butt3, C. M. Buttar53, J. M. Butterworth77, P. Butti106, W. Buttinger28 A. Buzatu53, M. Byszewski10, S. Cabrera Urbán168, D. Caforio20a,20b, O. Cakir4a, P. Calafiura15, A. Calandri137 G. Calderini79, P. Calfayan99, R. Calkins107, L. P. Caloba24a, D. Calvet34, S. Calvet34, R. Camacho Toro49, S. Camarda42

D.Cameron118, L. M. Caminada15, R. Caminal Armadans12, S. Campana30, M. Campanelli77, A. Campoverde149 V. Canale103a,103b, A. Canepa160a, M. Cano Bret75, J. Cantero81, R. Cantrill125a, T. Cao40, M. D. M. Capeans Garrido30 I. Caprini26a, M. Caprini26a, M. Capua37a,37b, R. Caputo82, R. Cardarelli134a, T. Carli30, G. Carlino103a, L. Carminati90a,90b S. Caron105, E. Carquin32a, G. D. Carrillo-Montoya146c, J. R. Carter28, J. Carvalho125a,125c, D. Casadei77, M. P. Casado12 M. Casolino12, E. Castaneda-Miranda146b, A. Castelli106, V. Castillo Gimenez168, N. F. Castro125a, P. Catastini57 A. Catinaccio30, J. R. Catmore118, A. Cattai30, G. Cattani134a,134b, J. Caudron82, V. Cavaliere166, D. Cavalli90a M. Cavalli-Sforza12, V. Cavasinni123a,123c, F. Ceradini135a,135b, B. C. Cerio45, K. Cerny128, A. S. Cerqueira24b A. Cerri150, L. Cerrito75, F. Cerutti15, M. Cerv30, A. Cervelli17, S. A. Cetin19b, A. Chafaq136a, D. Chakraborty107 I. Chalupkova128, P. Chang166, B. Chapleau86, J. D. Chapman28, D. Charfeddine116, D.G.Charlton18, C. C. Chau159

C.A.Chavez Barajas150, S.Cheatham86, A. Chegwidden89, S. Chekanov6, S. V. Chekulaev160a, G. A. Chelkov64,g M. A. Chelstowska88, C. Chen63, H.Chen25, K.Chen149, L. Chen33d,h, S. Chen33c, X. Chen146c, Y. Chen66 Y.Chen35, H.C.Cheng88, Y.Cheng31, A. Cheplakov64, R. Cherkaoui El Moursli136e, V. Chernyatin25,*, E. Cheu7 L. Chevalier137, V. Chiarella47, G. Chiefari103a,103b, J. T. Childers6, A. Chilingarov71, G. Chiodini72a, A. S. Chisholm18 R. T. Chislett77, A. Chitan26a, M. V. Chizhov64, S. Chouridou9, B. K. B. Chow99, D. Chromek-Burckhart30 M. L. Chu152, J. Chudoba126, J. J. Chwastowski39, L. Chytka114, G. Ciapetti133a,133b, A. K. Ciftci4a, R. Ciftci4a

D. Cinca53, V. Cindro74, A. Ciocio15, P. Cirkovic13b, Z. H. Citron173, M. Citterio90a, M. Ciubancan26a, A.Clark49 P.J.Clark46, R.N.Clarke15, W. Cleland124, J.C.Clemens84, C. Clement147a,147b, Y. Coadou84, M. Cobal165a,165c A. Coccaro139, J.Cochran63, L.Coffey23, J. G. Cogan144, J. Coggeshall166, B.Cole35, S.Cole107, A. P. Colijn106 J. Collot55, T. Colombo58c, G.Colon85, G. Compostella100, P. Conde Muiño125a,125b, E. Coniavitis48, M. C. Conidi12

S. H. Connell146b, I. A. Connelly76, S. M. Consonni90a,90b, V. Consorti48, S. Constantinescu26a, C. Conta120a,120b

G. Conti57, F. Conventi103a,i, M.Cooke15, B.D.Cooper77, A. M. Cooper-Sarkar119, N.J.Cooper-Smith76, K. Copic15 T. Cornelissen176, M. Corradi20a, F. Corriveau86,j, A. Corso-Radu164, A. Cortes-Gonzalez12, G. Cortiana100, G. Costa90a M.J.Costa168, D. Costanzo140, D. Côté8, G. Cottin28, G. Cowan76, B. E. Cox83, K. Cranmer109, G. Cree29 S. Crépé-Renaudin55, F. Crescioli79, W. A. Cribbs147a,147b, M. Crispin Ortuzar119, M. Cristinziani21, V. Croft105

G. Crosetti37a,37b, C.-M. Cuciuc26a, T. Cuhadar Donszelmann140, J. Cummings177, M. Curatolo47, C. Cuthbert151

H. Czirr142, P. Czodrowski3, Z. Czyczula177, S.D'Auria53, M. D'Onofrio73, M. J. Da Cunha Sargedas De Sousa125a,125b

C. Da Via83, W. Dabrowski38a, A. Dafinca119, T. Dai88, O. Dale14, F. Dallaire94, C. Dallapiccola85, M. Dam36 A. C. Daniells18, M. Dano Hoffmann137, V. Dao48, G. Darbo50a, S. Darmora8, J. A. Dassoulas42, A. Dattagupta60 W. Davey21, C.David170, T. Davidek128, E. Davies1194, M. Davies154, O. Davignon79, A.R.Davison77 P.Davison77, Y. Davygora58a, E. Dawe143, I. Dawson140, R. K. Daya-Ishmukhametova85, K. De8, R. de Asmundis103a S. De Castro20a,20b, S.DeCecco79, N. De Groot105, P. de Jong106, H. De la Torre81, F. De Lorenzi63, L. De Nooij106

D. De Pedis133a, A. De Salvo133a, U. De Sanctis150, A. De Santo150, J. B. De Vivie De Regie116, W. J. Dearnaley71 R. Debbe25, C. Debenedetti138, B. Dechenaux55, D. V. Dedovich64, I. Deigaard106, J.Del Peso81, T. Del Prete123a,123b F. Deliot137, C.M.Delitzsch49, M. Deliyergiyev74, A. Dell'Acqua30, L. Dell'Asta22, M. Dell'Orso123a,123b M. Della Pietra103a,i, D. della Volpe49, M. Delmastro5, P. A. Delsart55, C. Deluca106, S. Demers177, M. Demichev64 A. Demilly79, S. P. Denisov129, D. Derendarz39, J. E. Derkaoui136d, F. Derue79, P. Dervan73, K. Desch21, C. Deterre42 P. O. Deviveiros106, A. Dewhurst130, S. Dhaliwal106, A. Di Ciaccio134a,134b, L. Di Ciaccio5, A. Di Domenico133a,133b C. Di Donato103a,103b, A. Di Girolamo30, B. Di Girolamo30, A. Di Mattia153, B. Di Micco135a,135b, R. Di Nardo47 A. Di Simone48, R. Di Sipio20a,20b, D. Di Valentino29, F.A.Dias46, M. A. Diaz32a, E. B. Diehl88, J.Dietrich42 T. A. Dietzsch58a, S. Diglio84, A. Dimitrievska13a, J. Dingfelder21, C. Dionisi133a,133b, P. Dita26a, S. Dita26a, F. Dittus30

F. Djama84, T. Djobava51b, M. A. B. do Vale24c, A. Do Valle Wemans125a,125g, D. Dobos30, C. Doglioni49, T. Doherty53 T. Dohmae156, J. Dolejsi128, Z. Dolezal128, B. A. Dolgoshein97,*, M. Donadelli24d, S. Donati123a,123b, P. Dondero120a,120b J. Donini34, J. Dopke130, A. Doria103a, M. T. Dova70, A.T.Doyle53, M. Dris10, J. Dubbert88, S. Dube15, E. Dubreuil34

E. Duchovni173, G. Duckeck99, O. A. Ducu26a, D. Duda176, A. Dudarev30, F. Dudziak63, L. Duflot116, L. Duguid76 M. Dührssen30,M. Dunford58a,H. Duran Yildiz4a,M. Düren52,A. Durglishvili51b,M. Dwuznik38a,M. Dyndal38a,J. Ebke99 W. Edson2, N.C.Edwards46, W. Ehrenfeld21, T. Eifert144, G. Eigen14, K. Einsweiler15, T. Ekelof167, M. El Kacimi136c M.Ellert167, S.Elles5, F. Ellinghaus82, N.Ellis30, J. Elmsheuser99, M. Elsing30, D. Emeliyanov130, Y. Enari156

0. C. Endner82, M. Endo117, R. Engelmann149, J. Erdmann177, A. Ereditato17, D. Eriksson147a, G. Ernis176, J.Ernst2 M. Ernst25, J. Ernwein137, D. Errede166, S. Errede166, E. Ertel82, M. Escalier116, H. Esch43, C. Escobar124, B. Esposito47 A. I. Etienvre137, E. Etzion154, H.Evans60, A. Ezhilov122, L. Fabbri20a,20b, G. Facini31, R. M. Fakhrutdinov129 S. Falciano133a, R.J. Falla77, J. Faltova128, Y. Fang33a, M. Fanti90a,90b, A. Farbin8, A. Farilla135a, T. Farooque12 S. Farrell15, S. M. Farrington171, P. Farthouat30, F. Fassi136e, P. Fassnacht30, D. Fassouliotis9, A. Favareto50a,50b L. Fayard116, P. Federic145a, O. L. Fedin122,k, W. Fedorko169, M. Fehling-Kaschek48, S. Feigl30, L. Feligioni84

C. Feng33d, E.J.Feng6, H.Feng88, A. B. Fenyuk129, S. Fernandez Perez30, S.Ferrag53, J. Ferrando53, A.Ferrari167 P.Ferrari106, R. Ferrari120a, D. E. Ferreira de Lima53, A.Ferrer168, D. Ferrere49, C. Ferretti88, A. Ferretto Parodi50a,50b M. Fiascaris31, F.Fiedler82, A. Filipcic74, M. Filipuzzi42, F. Filthaut105, M. Fincke-Keeler170, K. D. Finelli151 M. C. N. Fiolhais125a,125c, L. Fiorini168, A. Firan40, A.Fischer2, J.Fischer176, W.C.Fisher89, E.A.Fitzgerald23 M. Flechl48, I. Fleck142, P. Fleischmann88, S. Fleischmann176, G. T. Fletcher140, G. Fletcher75, T. Flick176, A. Floderus80 L. R. Flores Castillo174,l, A. C. Florez Bustos160b, M. J. Flowerdew100, A.Formica137, A. Forti83, D. Fortin160a

D. Fournier116, H. Fox71, S. Fracchia12, P. Francavilla79, M. Franchini20a,20b, S. Franchino30, D. Francis30, L. Franconi118 M.Franklin57, S.Franz61, M. Fraternali120a,120b, S.T.French28, C.Friedrich42, F.Friedrich44, D. Froidevaux30 J. A. Frost28, C. Fukunaga157, E. Fullana Torregrosa82, B. G. Fulsom144, J. Fuster168, C. Gabaldon55, O. Gabizon173

A. Gabrielli20a,20b, A. Gabrielli133a,133b, S. Gadatsch106, S. Gadomski49, G. Gagliardi50a,50b, P. Gagnon60, C. Galea105

B. Galhardo125a,125c, E.J.Gallas119, V. Gallo17, B. J. Gallop130, P.Gallus127, G. Galster36, K. K. Gan110, J. Gao33b,h Y. S. Gao144,f, F. M. Garay Walls46, F. Garberson177, C. García168, J. E. García Navarro168, M. Garcia-Sciveres15 R. W. Gardner31, N. Garelli144, V. Garonne30, C. Gatti47, G. Gaudio120a, B. Gaur142, L. Gauthier94, P. Gauzzi133a,133b

1. L. Gavrilenko95, C.Gay169, G. Gaycken21, E. N. Gazis10, P. Ge33d, Z. Gecse169, C. N. P. Gee130, D. A. A. Geerts106 Ch. Geich-Gimbel21, K. Gellerstedt147a,147b, C. Gemme50a, A. Gemmell53, M. H. Genest55, S. Gentile133a,133b

M. George54, S. George76, D. Gerbaudo164, A. Gershon154, H. Ghazlane136b, N. Ghodbane34, B. Giacobbe20a

S. Giagu133a,133b, V. Giangiobbe12, P. Giannetti123a,123b, F. Gianotti30, B. Gibbard25, S.M.Gibson76, M. Gilchriese15 T. P. S. Gillam28, D. Gillberg30, G. Gilles34, D. M. Gingrich3,e, N. Giokaris9, M. P. Giordani165a,165c, R. Giordano103a,103b

F. M. Giorgi20a, F. M. Giorgi16, P. F. Giraud137, D. Giugni90a, C.Giuliani48, M. Giulini58b, B. K. Gjelsten118 S. Gkaitatzis155, I. Gkialas155,m, L. K. Gladilin98, C. Glasman81, J. Glatzer30, P. C. F. Glaysher46, A. Glazov42

G. L. Glonti64, M. Goblirsch-Kolb100, J. R. Goddard75, J. Godlewski30, C. Goeringer82, S. Goldfarb88, T. Golling177 D. Golubkov129, A. Gomes 125a,125b,125d, L. S. Gomez Fajardo42, R. Gongalo125a, J. Goncalves Pinto Firmino Da Costa137 L. Gonella21, S. González de la Hoz168, G. Gonzalez Parra12, S.Gonzalez-Sevilla49, L. Goossens30, P. A. Gorbounov96

H. A. Gordon25, I. Gorelov104, B. Gorini30, E. Gorini72a,72b, A. Gorisek74, E. Gornicki39, A. T. Goshaw6, C. Gössling43 M. I. Gostkin64, M. Gouighri136a, D. Goujdami136c, M. P. Goulette49, A. G. Goussiou139, C. Goy5, S. Gozpinar23 H. M. X. Grabas137, L. Graber54, I. Grabowska-Bold38a, P. Grafström20a,20b, K.-J. Grahn42, J. Gramling49, E. Gramstad118 S. Grancagnolo16, V. Grassi149, V. Gratchev122, H. M. Gray30, E. Graziani135a, O. G. Grebenyuk122, Z. D. Greenwood78," K. Gregersen77, I.M.Gregor42, P. Grenier144, J. Griffiths8, A. A. Grillo138, K.Grimm71, S. Grinstein12,°, Ph. Gris34 Y. V. Grishkevich98, J.-F. Grivaz116, J. P. Grohs44, A. Grohsjean42, E. Gross173, J. Grosse-Knetter54, G. C. Grossi134a,134b J. Groth-Jensen173, Z. J. Grout150, L. Guan33b, F. Guescini49, D. Guest177, O. Gueta154, C. Guicheney34, E. Guido50a,50b T. Guillemin116, S. Guindon2, U. Gul53, C. Gumpert44, J.Gunther127, J. Guo35, S.Gupta119, P.Gutierrez112 N.G.Gutierrez Ortiz53, C. Gutschow77, N. Guttman154, C. Guyot137, C. Gwenlan119, C. B. Gwilliam73, A.Haas109

C. Haber15, H. K. Hadavand8, N. Haddad136e, P. Haefner21, S. Hageböeck21, Z. Hajduk39, H. Hakobyan178, M. Haleem42

D. Hall119, G. Halladjian89, K. Hamacher176, P. Hamal114, K. Hamano170, M. Hamer54, A. Hamilton146a, S. Hamilton162 G. N. Hamity146c, P. G. Hamnett42, L. Han33b, K. Hanagaki117, K. Hanawa156, M. Hance15, P. Hanke58a, R.Hann137 J. B. Hansen36, J. D. Hansen36, P. H. Hansen36, K. Hara161, A. S. Hard174, T. Harenberg176, F. Hariri116, S. Harkusha91 D.Harper88, R.D.Harrington46, O.M.Harris139, P.F.Harrison171, F. Hartjes106, M. Hasegawa66, S. Hasegawa102 Y. Hasegawa141, A. Hasib112, S. Hassani137, S. Haug17, M. Hauschild30, R. Hauser89, M. Havranek126, C. M. Hawkes18 R.J.Hawkings30, A.D.Hawkins80, T. Hayashi161, D. Hayden89, C.P.Hays119, H. S. Hayward73, S.J.Haywood130 S.J. Head18, T.Heck82, V. Hedberg80, L. Heelan8, S.Heim121, T. Heim176, B. Heinemann15, L.Heinrich109

J. Hejbal126, L. Helary22, C.Heller99, M.Heller30, S. Hellman147a,147b, D. Hellmich21, C.Helsens30, J.Henderson119 Y.Heng174, R. C. W. Henderson71, C. Hengler42, A.Henrichs177, A. M. Henriques Correia30, S. Henrot-Versille116

C. Hensel54, G. H. Herbert16, Y. Hernández Jiménez168, R. Herrberg-Schubert16, G. Herten48, R. Hertenberger99 L. Hervas30, G. G. Hesketh77, N. P. Hessey106, R. Hickling75, E. Higón-Rodriguez168, E. Hill170, J. C. Hill28 K. H. Hiller42, S. Hillert21, S. J. Hillier18, I. Hinchliffe15, E. Hines121, M. Hirose158, D. Hirschbuehl176, J. Hobbs149 N. Hod106, M. C. Hodgkinson140, P.Hodgson140, A. Hoecker30, M. R. Hoeferkamp104, F. Hoenig99, J.Hoffman40

D.Hoffmann84, J. I. Hofmann58a, M. Hohlfeld82, T.R.Holmes15, T. M. Hong121, L. Hooft van Huysduynen109 W.H.Hopkins115, Y. Horii102, J.-Y. Hostachy55, S. Hou152, A. Hoummada136a, J.Howard119, J. Howarth42 M. Hrabovsky114, I. Hristova16, J. Hrivnac116, T. Hryn'ova5, C. Hsu146c, P. J. Hsu82, S.-C. Hsu139, D. Hu35, X. Hu25 Y. Huang42, Z. Hubacek30, F. Hubaut84, F. Huegging21, T. B. Huffman119, E. W. Hughes35, G. Hughes71, M. Huhtinen30 T. A. Hülsing82, M. Hurwitz15, N. Huseynov64,b, J. Huston89, J. Huth57, G. Iacobucci49, G. Iakovidis10, I. Ibragimov142 L. Iconomidou-Fayard116, E. Ideal177, P. Iengo103a, O. Igonkina106, T. Iizawa172, Y. Ikegami65, K. Ikematsu142 M. Ikeno65, Y. Ilchenko31,p, D. Iliadis155, N. Ilic159, Y. Inamaru66, T. Ince100, P. Ioannou9, M. Iodice135a, K. Iordanidou9 V. Ippolito57, A. Irles Quiles168, C. Isaksson167, M. Ishino67, M. Ishitsuka158, R. Ishmukhametov110, C. Issever119 S. Istin19a, J. M. Iturbe Ponce83, R. Iuppa134a,134b, J. Ivarsson80, W. Iwanski39, H. Iwasaki65, J. M. Izen41, V. Izzo103a

B.Jackson121, M.Jackson73, P.Jackson1, M. R. Jaekel30, V. Jain2, K. Jakobs48, S. Jakobsen30, T. Jakoubek126 J. Jakubek127, D. O. Jamin152, D.K.Jana78, E.Jansen77, H.Jansen30, J.Janssen21, M.Janus171, G. Jarlskog80 N. Javadov64,b, T. Javûrek48, L. Jeanty15, J. Jejelava51a,q, G.-Y. Jeng151, D. Jennens87, P. Jenni48,r, J. Jentzsch43

C. Jeske171, S. Jézéquel5, H. Ji174, J. Jia149, Y. Jiang33b, M. Jimenez Belenguer42, S. Jin33a, A. Jinaru26a, O. Jinnouchi158 M. D. Joergensen36, K. E. Johansson147a,147b, P. Johansson140, K. A. Johns7, K. Jon-And147a,147b, G. Jones171

R. W. L. Jones71, T. J. Jones73, J. Jongmanns58a, P. M. Jorge125a,125b, K. D. Joshi83, J. Jovicevic148, X. Ju174, C. A. Jung43 R. M. Jungst30, P. Jussel61, A. Juste Rozas12^, M. Kaci168, A. Kaczmarska39, M. Kado116, H. Kagan110, M. Kagan144

E. Kajomovitz45, C. W. Kalderon119, S.Kama40, A. Kamenshchikov129, N. Kanaya156, M. Kaneda30, S. Kaneti28 V. A. Kantserov97, J. Kanzaki65, B. Kaplan109, A. Kapliy31, D. Kar53, K. Karakostas10, N. Karastathis10, M. J. Kareem54 M. Karnevskiy82, S. N. Karpov64, Z. M. Karpova64, K. Karthik109, V. Kartvelishvili71, A. N. Karyukhin129, L. Kashif174 G. Kasieczka58b, R. D. Kass110, A. Kastanas14, Y. Kataoka156, A. Katre49, J. Katzy42, V. Kaushik7, K. Kawagoe69 T. Kawamoto156, G. Kawamura54, S. Kazama156, V. F. Kazanin108, M. Y. Kazarinov64, R. Keeler170, R. Kehoe40 M. Keil54, J. S. Keller42, J. J. Kempster76, H. Keoshkerian5, O. Kepka126, B. P. Kersevan74, S. Kersten176, K. Kessoku156 J. Keung159, F. Khalil-zada11, H. Khandanyan147a,147b, A. Khanov113, A. Khodinov97, A. Khomich58a, T. J. Khoo28 G. Khoriauli21, A. Khoroshilov176, V. Khovanskiy96, E. Khramov64, J. Khubua51b, H. Y. Kim8, H. Kim147a,147b S. H. Kim161, N. Kimura172, O. Kind16, B.T.King73, M.King168, R. S. B. King119, S.B.King169, J. Kirk130 A. E. Kiryunin100, T. Kishimoto66, D. Kisielewska38a, F. Kiss48, T. Kittelmann124, K. Kiuchi161, E. Kladiva145b M.Klein73, U.Klein73, K. Kleinknecht82, P. Klimek147a,147b, A. Klimentov25, R. Klingenberg43, J. A. Klinger83 T. Klioutchnikova30, P. F. Klok105, E.-E. Kluge58a, P. Kluit106, S. Kluth100, E. Kneringer61, E. B. F. G. Knoops84 A. Knue53, D. Kobayashi158, T. Kobayashi156, M. Kobel44, M. Kocian144, P. Kodys128, P. Koevesarki21, T. Koffas29

E. Koffeman106, L. A. Kogan119, S. Kohlmann176, Z. Kohout127, T. Kohriki65, T. Koi144, H. Kolanoski16, I. Koletsou5 J. Koll89, A. A. Komar95,*, Y. Komori156, T. Kondo65, N. Kondrashova42, K. Köneke48, A.C.König105, S.König82 T. Kono65,s, R. Konoplich109,c, N. Konstantinidis77, R. Kopeliansky153, S. Koperny38a, L. Köpke82, A.K.Kopp48 K. Korcyl39, K. Kordas155, A. Korn77, A. A. Korol108,c, I. Korolkov12, E. V. Korolkova140, V. A. Korotkov129 O. Kortner100, S. Kortner100, V. V. Kostyukhin21, V. M. Kotov64, A. Kotwal45, C. Kourkoumelis9, V. Kouskoura155 A. Koutsman160a, R. Kowalewski170, T. Z. Kowalski38a, W. Kozanecki137, A. S. Kozhin129, V. Kral127, V. A. Kramarenko98

G. Kramberger74, D. Krasnopevtsev97, M. W. Krasny79, A. Krasznahorkay30, J. K. Kraus21, A. Kravchenko25, S. Kreiss109 M. Kretz58c, J. Kretzschmar73, K. Kreutzfeldt52, P. Krieger159, K. Kroeninger54, H. Kroha100, J. Kroll121, J. Kroseberg21 J. Krstic13a, U. Kruchonak64, H. Krüger21, T. Kruker17, N. Krumnack63, Z. V. Krumshteyn64, A. Kruse174, M. C. Kruse45 M. Kruskal22, T. Kubota87, S. Kuday4a, S. Kuehn48, A. Kugel58c, A. Kuhl138, T. Kuhl42, V. Kukhtin64, Y. Kulchitsky91 S. Kuleshov32b, M. Kuna133a,133b, J. Kunkle121, A. Kupco126, H. Kurashige66, Y. A. Kurochkin91, R. Kurumida66 V. Kus126, E. S. Kuwertz148, M. Kuze158, J. Kvita114, A. La Rosa49, L. La Rotonda37a,37b, C. Lacasta168, F. Lacava133a,133b J. Lacey29, H. Lacker16, D. Lacour79, V. R. Lacuesta168, E. Ladygin64, R. Lafaye5, B. Laforge79, T. Lagouri177, S. Lai48

H. Laier58a, L. Lambourne77, S. Lammers60, C. L. Lampen7, W. Lampl7, E. Lançon137, U. Landgraf48, M. P. J. Landon75 V. S. Lang58a, A. J. Lankford164, F. Lanni25, K. Lantzsch30, S. Laplace79, C. Lapoire21, J. F. Laporte137, T. Lari90a

F. Lasagni Manghi20a,20b, M. Lassnig30, P. Laurelli47, W. Lavrijsen15, A. T. Law138, P. Laycock73, O. LeDortz79 E. Le Guirriec84, E. Le Menedeu12, T. LeCompte6, F. Ledroit-Guillon55, C.A.Lee152, H.Lee106, J. S. H. Lee117 S.C.Lee152, L.Lee1, G. Lefebvre79, M. Lefebvre170, F. Legger99, C. Leggett15, A. Lehan73, M. Lehmacher21

G. Lehmann Miotto30, X.Lei7, W. A. Leight29, A. Leisos155, A.G.Leister177, M. A. L. Leite24d, R. Leitner128

D. Lellouch173, B. Lemmer54, K. J. C. Leney77, T. Lenz21, G.Lenzen176, B. Lenzi30, R.Leone7, S. Leone123a,123b

C. Leonidopoulos46, S. Leontsinis10,C. Leroy94, C. G. Lester28, C. M. Lester121, M. Levchenko122, J. Leveque5,D. Levin88 L. J. Levinson173, M.Levy18, A.Lewis119, G.H.Lewis109, A. M. Leyko21, M. Leyton41, B. Li33b,u, B.Li84, H.Li149

H. L. Li31, L. Li45, L. Li33e, S. Li45, Y. Li33c,v, Z. Liang138, H. Liao34, B. Liberti134a, P. Lichard30, K. Lie166, J. Liebal21 W. Liebig14, C. Limbach21, A. Limosani87, S. C. Lin152,w, T. H. Lin82, F. Linde106, B. E. Lindquist149, J. T. Linnemann89

E. Lipeles121, A. Lipniacka14, M. Lisovyi42, T. M. Liss166, D. Lissauer25, A. Lister169, A. M. Litke138, B. Liu152, D. Liu152 J. B. Liu33b, K. Liu33b,x, L. Liu88, M. Liu45, M. Liu33b, Y. Liu33b, M. Livan120a,120b, S. S. A. Livermore119, A. Lleres55 J. Llorente Merino81, S. L. Lloyd75, F. Lo Sterzo152, E. Lobodzinska42, P. Loch7, W. S. Lockman138, T. Loddenkoetter21

F. K. Loebinger83, A. E. Loevschall-Jensen36, A. Loginov177, T. Lohse16, K. Lohwasser42, M. Lokajicek126 V. P. Lombardo5, B. A. Long22, J. D. Long88, R. E. Long71, L. Lopes125a, D. Lopez Mateos57, B. Lopez Paredes140

I. Lopez Paz12, J.Lorenz99, N. Lorenzo Martinez60, M. Losada163, P. Loscutoff15, X.Lou41, A. Lounis116, J.Love6 P.A.Love71, A. J. Lowe144,f, F. Lu33a, N. Lu88, H. J. Lubatti139, C. Luci133a,133b, A. Lucotte55, F. Luehring60 W.Lukas61, L. Luminari133a, O. Lundberg147a,147b, B. Lund-Jensen148, M. Lungwitz82, D.Lynn25, R. Lysak126 E. Lytken80, H. Ma25, L. L. Ma33d, G. Maccarrone47, A. Macchiolo100, J. Machado Miguens125a,125b, D. Macina30

D. Madaffari84, R. Madar48, H. J. Maddocks71, W. F. Mader44, A. Madsen167, M. Maeno8, T. Maeno25, A. Maevskiy98

E. Magradze54, K. Mahboubi48, J.Mahlstedt106, S.Mahmoud73, C. Maiani137, C. Maidantchik24a, A. A. Maier100

A. Maio125a,125b,125d, S. Majewski115, Y. Makida65, N. Makovec116, P. Mal137,y, B. Malaescu79, Pa. Malecki39 V. P. Maleev122, F. Malek55, U. Mallik62, D. Malon6, C. Malone144, S. Maltezos10, V. M. Malyshev108, S. Malyukov30 J. Mamuzic13b, B. Mandelli30, L. Mandelli90a, I. Mandic74, R. Mandrysch62, J. Maneira125a,125b, A. Manfredini100 L. Manhaes de Andrade Filho24b, J. A. Manjarres Ramos160b, A. Mann99, P. M. Manning138, A. Manousakis-Katsikakis9

B. Mansoulie137, R. Mantifel86, L. Mapelli30, L. March146c, J. F. Marchand29, G. Marchiori79, M. Marcisovsky126

C.P.Marino170, M. Marjanovic13a, C. N. Marques125a, F. Marroquim24a, S. P. Marsden83, Z.Marshall15, L. F. Marti17 S. Marti-Garcia168, B.Martin30, B.Martin89, T.A.Martin171, V.J.Martin46, B. Martin dit Latour14, H.Martinez137 M. Martinez12,°, S. Martin-Haugh130, A. C. Martyniuk77, M. Marx139, F. Marzano133a, A. Marzin30, L. Masetti82 T. Mashimo156, R. Mashinistov95, J. Masik83, A. L. Maslennikov108c, I. Massa20a,20b, L. Massa20a,20b, N. Massol5 P. Mastrandrea149, A. Mastroberardino37a,37b, T. Masubuchi156, P. Mättig176, J. Mattmann82, J. Maurer26a, S. J. Maxfield73

D. A. Maximov108,c, R. Mazini152, L. Mazzaferro134a,134b, G. Mc Goldrick159, S. P. Mc Kee88, A. McCarn88 R. L. McCarthy149, T. G. McCarthy29, N. A. McCubbin130, K. W. McFarlane56,*, J. A. Mcfayden77, G. Mchedlidze54 S. J. McMahon130, R. A. McPherson170,j, J. Mechnich106, M. Medinnis42, S.Meehan31, S. Mehlhase99, A. Mehta73 K. Meier58a, C. Meineck99, B. Meirose80, C. Melachrinos31, B. R. Mellado Garcia146c, F. Meloni17, A. Mengarelli20a,20b S.Menke100, E. Meoni162, K. M. Mercurio57, S. Mergelmeyer21, N. Meric137, P. Mermod49, L. Merola103a,103b C. Meroni90a, F. S. Merritt31, H. Merritt110, A. Messina30,z, J.Metcalfe25, A.S.Mete164, C.Meyer82, C.Meyer121 J.-P. Meyer137, J. Meyer30, R. P. Middleton130, S. Migas73, L. Mijovic21, G. Mikenberg173, M. Mikestikova126, M. Mikuz74 A. Milic30, D.W.Miller31, C.Mills46, A. Milov173, D. A. Milstead147a,147b, D. Milstein173, A. A. Minaenko129 I. A. Minashvili64, A. I. Mincer109, B. Mindur38a, M. Mineev64, Y. Ming174, L. M. Mir12, G. Mirabelli133a, T. Mitani172 J. Mitrevski99, V. A. Mitsou168, S. Mitsui65, A. Miucci49, P. S. Miyagawa140, J. U. Mjörnmark80, T. Moa147a,147b K. Mochizuki84, S. Mohapatra35, W. Mohr48, S. Molander147a,147b, R. Moles-Valls168, K. Mönig42, C. Monini55, J. Monk36

E. Monnier84, J. Montejo Berlingen12, F. Monticelli70, S. Monzani133a,133b, R.W.Moore3, N. Morange62, D.Moreno82 M. Moreno Llacer54, P. Morettini50a, M. Morgenstern44, M. Morii57, S. Moritz82, A. K. Morley148, G. Mornacchi30 J. D. Morris75, L. Morvaj102, H. G. Moser100, M. Mosidze51b, J. Moss110, K. Motohashi158, R. Mount144, E. Mountricha25 S. V. Mouraviev95,*,E. J. W. Moyse85, S. Muanza84, R. D. Mudd18, F. Mueller58a, J. Mueller124, K. Mueller21, T. Mueller28 T.Mueller82, D. Muenstermann49, Y. Munwes154, J. A. Murillo Quijada18, W.J.Murray171,130, H. Musheghyan54 E. Musto153, A. G. Myagkov129,aa, M. Myska127, O. Nackenhorst54, J. Nadal54, K. Nagai61, R. Nagai158, Y. Nagai84 K. Nagano65, A. Nagarkar110, Y. Nagasaka59,M. Nagel100,A. M. Nairz30, Y. Nakahama30, K. Nakamura65, T. Nakamura156 I. Nakano111, H. Namasivayam41, G. Nanava21, R. Narayan58b, T. Nattermann21, T. Naumann42, G. Navarro163, R. Nayyar7 H. A. Neal88, P. Yu. Nechaeva95, T. J. Neep83, P. D. Nef144, A. Negri120a,120b, G. Negri30, M. Negrini20a, S. Nektarijevic49 C. Nellist116, A.Nelson164, T.K.Nelson144, S. Nemecek126, P. Nemethy109, A. A. Nepomuceno24a, M. Nessi30,ab M.S.Neubauer166, M.Neumann176, R. M. Neves109, P. Nevski25, P.R.Newman18, D. H.Nguyen6, R. B. Nickerson119 R. Nicolaidou137, B. Nicquevert30, J. Nielsen138, N. Nikiforou35, A. Nikiforov16, V. Nikolaenko129,aa, I. Nikolic-Audit79 K. Nikolics49, K. Nikolopoulos18, P. Nilsson8, Y. Ninomiya156, A. Nisati133a, R. Nisius100, T. Nobe158, L. Nodulman6 M. Nomachi117, I. Nomidis29, S. Norberg112, M. Nordberg30, O. Novgorodova44, S. Nowak100, M. Nozaki65, L. Nozka114 K. Ntekas10, G. Nunes Hanninger87, T. Nunnemann99, E. Nurse77, F. Nuti87, B. J. O'Brien46, F. O'grady7, D. C. O'Neil143

V. O'Shea53,F. G. Oakham29,e,H. Oberlack100,T. Obermann21,J. Ocariz79,A. Ochi66,M. I. Ochoa77,S. Oda69,S. Odaka65 H. Ogren60, A. Oh83, S. H. Oh45, C. C. Ohm15, H. Ohman167, W. Okamura117, H. Okawa25, Y. Okumura31, T. Okuyama156 A. Olariu26a, A. G. Olchevski64, S. A. Olivares Pino46, D. Oliveira Damazio25, E. Oliver Garcia168, A.Olszewski39 J. Olszowska39, A. Onofre125a,125e, P. U. E. Onyisi31,p, C. J. Oram160a, M. J. Oreglia31, Y. Oren154, D. Orestano135a,135b N. Orlando72a,72b, C. Oropeza Barrera53, R. S. Orr159, B. Osculati50a,50b, R. Ospanov121, G. Otero y Garzon27, H. Otono69 M. Ouchrif136d, E. A. Ouellette170, F. Ould-Saada118, A. Ouraou137, K. P. Oussoren106, Q. Ouyang33a, A. Ovcharova15 M. Owen83, V. E. Ozcan19a, N. Ozturk8, K. Pachal119, A. Pacheco Pages12, C. Padilla Aranda12, M. Pagácová48 S. Pagan Griso15, E. Paganis140, C. Pahl100, F. Paige25, P. Pais85, K. Pajchel118, G. Palacino160b, S. Palestini30, M. Palka38b

D. Pallin34, A. Palma125a,125b, J. D. Palmer18, Y.B.Pan174, E. Panagiotopoulou10, J. G. Panduro Vazquez76, P. Pani106 N. Panikashvili88, S. Panitkin25, D. Pantea26a, L. Paolozzi134a,134b, Th. D. Papadopoulou10, K. Papageorgiou155,m A. Paramonov6, D. Paredes Hernandez34, M. A. Parker28, F. Parodi50a,50b, J. A. Parsons35, U. Parzefall48

E. Pasqualucci133a, S. Passaggio50a, A. Passeri135a, F. Pastore135a,135b,*, Fr. Pastore76, G. Pásztor29, S. Pataraia176 N. D. Patel151, J.R.Pater83, S. Patricelli103a,103b, T. Pauly30, J. Pearce170, L. E. Pedersen36, M. Pedersen118 S. Pedraza Lopez168, R. Pedro125a,125b, S. V. Peleganchuk108, D.Pelikan167, H. Peng33b, B.Penning31, J. Penwell60 D. V. Perepelitsa25, E. Perez Codina160a, M. T. Pérez García-Estañ168, V. Perez Reale35, L. Perini90a,90b, H. Pernegger30 S. Perrella103a,103b, R. Perrino72a, R. Peschke42, V. D. Peshekhonov64, K.Peters30, R. F. Y. Peters83, B.A.Petersen30 T. C. Petersen36, E. Petit42, A. Petridis147a,147b, C. Petridou155, E. Petrolo133a, F. Petrucci135a,135b, N. E. Pettersson158 R. Pezoa32b, P. W. Phillips130, G. Piacquadio144, E. Pianori171, A. Picazio49, E. Piccaro75, M. Piccinini20a,20b, R. Piegaia27

D. T. Pignotti110, J. E. Pilcher31, A. D. Pilkington77, J. Pina125a,125b,125d, M. Pinamonti165a,165c,ac, A. Pinder119 J. L. Pinfold3, A. Pingel36, B. Pinto125a, S. Pires79, M. Pitt173, C. Pizio90a,90b, L. Plazak145a, M.-A. Pleier25, V. Pleskot128

E. Plotnikova64, P. Plucinski147a,147b, S. Poddar58a, F. Podlyski34, R. Poettgen82, L. Poggioli116, D.Pohl21, M.Pohl49

G. Polesello120a, A. Policicchio37a,37b, R. Polifka159, A. Polini20a, C. S. Pollard45, V. Polychronakos25, K.Pommes30 L. Pontecorvo133a, B. G. Pope89, G. A. Popeneciu26b, D. S. Popovic13a, A. Poppleton30, X. Portell Bueso12, S. Pospisil127 K. Potamianos15, I. N. Potrap64, C. J. Potter150, C. T. Potter115, G. Poulard30, J. Poveda60, V. Pozdnyakov64, P. Pralavorio84 A. Pranko15, S.Prasad30, R. Pravahan8, S. Prell63, D.Price83, J.Price73, L.E.Price6, D. Prieur124, M. Primavera72a M. Proissl46, K. Prokofiev47, F. Prokoshin32b, E. Protopapadaki137, S. Protopopescu25, J. Proudfoot6, M. Przybycien38a

H. Przysiezniak5, E. Ptacek115, D. Puddu135a,135b, E. Pueschel85, D. Puldon149, M. Purohit25,ad, P. Puzo116, J. Qian88 G. Qin53, Y. Qin83, A. Quadt54, D. R. Quarrie15, W. B. Quayle165a,165b, M. Queitsch-Maitland83, D. Quilty53 A. Qureshi160b, V. Radeka25, V. Radescu42, S. K. Radhakrishnan149, P. Radloff115, P. Rados87, F. Ragusa90a,90b, G. Rahal179 S. Rajagopalan25, M. Rammensee30, A. S. Randle-Conde40, C. Rangel-Smith167, K. Rao164, F. Rauscher99, T. C. Rave48 T. Ravenscroft53, M. Raymond30, A. L. Read118, N. P. Readioff73, D. M. Rebuzzi120a,120b, A. Redelbach175, G. Redlinger25 R. Reece138, K. Reeves41, L. Rehnisch16, H. Reisin27, M. Relich164, C. Rembser30, H. Ren33a, Z. L. Ren152, A. Renaud116 M. Rescigno133a, S. Resconi90a, O. L. Rezanova108,c, P. Reznicek128, R. Rezvani94, R. Richter100, M. Ridel79, P. Rieck16 J. Rieger54, M. Rijssenbeek149, A. Rimoldi120a,120b, L. Rinaldi20a, E. Ritsch61, I. Riu12, F. Rizatdinova113, E. Rizvi75 S. H. Robertson86,-), A. Robichaud-Veronneau86, D.Robinson28, J. E. M. Robinson83, A. Robson53, C. Roda123a,123b L. Rodrigues30, S. Roe30, O. R0hne118, S. Rolli162, A. Romaniouk97, M. Romano20a,20b, E. Romero Adam168 N. Rompotis139, M. Ronzani48, L. Roos79, E. Ros168, S. Rosati133a, K. Rosbach49, M. Rose76, P. Rose138, P. L. Rosendahl14 O. Rosenthal142, V. Rossetti147a,147b,E. Rossi103a,103b,L. P. Rossi50a,R. Rosten139, M. Rotaru26a,I. Roth173, J. Rothberg139 D.Rousseau116, C. R. Royon137, A. Rozanov84, Y. Rozen153, X. Ruan146c, F. Rubbo12, I. Rubinskiy42, V. I. Rud98 C.Rudolph44, M.S.Rudolph159, F. Rühr48, A.Ruiz-Martinez30, Z. Rurikova48, N. A. Rusakovich64, A. Ruschke99 J. P. Rutherfoord7, N. Ruthmann48, Y. F. Ryabov122, M. Rybar128, G. Rybkin116, N.C.Ryder119, A. F. Saavedra151 S. Sacerdoti27, A. Saddique3, I. Sadeh154, H. F.-W. Sadrozinski138, R. Sadykov64, F. Safai Tehrani133a, H.Sakamoto156 Y. Sakurai172, G. Salamanna135a,135b, A. Salamon134a, M. Saleem112, D. Salek106, P. H. Sales De Bruin139, D. Salihagic100 A. Salnikov144, J. Salt168, D. Salvatore37a,37b, F. Salvatore150, A. Salvucci105, A. Salzburger30, D. Sampsonidis155

A. Sanchez103a,103b, J. Sánchez168, V. Sanchez Martinez168, H. Sandaker14, R. L. Sandbach75, H. G. Sander82 M. P. Sanders99, M. Sandhoff176, T. Sandoval28, C. Sandoval163, R. Sandstroem100, D. P. C. Sankey130, A. Sansoni47 C. Santoni34, R. Santonico134a,134b, H. Santos125a, I. Santoyo Castillo150, K. Sapp124, A. Sapronov64, J. G. Saraiva125a,125d

B. Sarrazin21, G. Sartisohn176, O. Sasaki65, Y. Sasaki156, G. Sauvage5,*, E. Sauvan5, P. Savard159,e, D. O. Savu30

C. Sawyer119, L. Sawyer78,", D. H. Saxon53, J. Saxon121, C. Sbarra20a, A. Sbrizzi3, T. Scanlon77, D. A. Scannicchio164 M. Scarcella151, V. Scarfone37a,37b, J. Schaarschmidt173, P. Schacht100, D. Schaefer30, R. Schaefer42, S. Schaepe21 S. Schaetzel58b, U.Schäfer82, A. C. Schaffer116, D. Schaile99, R. D. Schamberger149, V. Scharf58a, V. A. Schegelsky122

D. Scheirich128, M.Schernau164, M. I. Scherzer35, C. Schiavi50a,50b, J. Schieck99, C. Schillo48, M. Schioppa37a,37b S. Schlenker30, E. Schmidt48, K. Schmieden30, C. Schmitt82, S. Schmitt58b, B. Schneider17, Y. J. Schnellbach73

U. Schnoor44, L. Schoeffel137, A. Schoening58b, B. D. Schoenrock89, A. L. S. Schorlemmer54, M. Schott82, D. Schouten160a, J. Schovancova25, S. Schramm159, M. Schreyer175, C. Schroeder82, N. Schuh82, M. J. Schultens21,

H.-C. Schultz-Coulon58a, H. Schulz16, M. Schumacher48, B. A. Schumm138, Ph. Schune137, C. Schwanenberger83, A. Schwartzman144, T. A. Schwarz88, Ph. Schwegler100, Ph. Schwemling137, R. Schwienhorst89, J. Schwindling137, T. Schwindt21, M. Schwoerer5, F. G. Sciacca17, E. Scifo116, G. Sciolla23, W. G. Scott130, F. Scuri123a,123b, F. Scutti21 J. Searcy88, G. Sedov42, E. Sedykh122, S. C. Seidel104, A. Seiden138, F. Seifert127, J. M. Seixas24a, G. Sekhniaidze103a S. J. Sekula40, K. E. Selbach46, D. M. Seliverstov122,*, G. Sellers73, N. Semprini-Cesari20a,20b, C. Serfon30, L. Serin116 L. Serkin54, T. Serre84, R. Seuster160a, H. Severini112, T. Sfiligoj74, F. Sforza100, A. Sfyrla30, E. Shabalina54, M. Shamim115 L. Y. Shan33a, R. Shang166, J. T. Shank22, M. Shapiro15, P. B. Shatalov96, K. Shaw165a,165b, C. Y. Shehu150, P. Sherwood77 L. Shi152,ae, S. Shimizu66, C. O. Shimmin164, M. Shimojima101, M. Shiyakova64, A. Shmeleva95, M. J. Shochet31

D. Short119, S. Shrestha63, E. Shulga97, M. A. Shupe7, S. Shushkevich42, P. Sicho126, O. Sidiropoulou155, D. Sidorov113 A. Sidoti133a, F. Siegert44, Dj. Sijacki13a, J. Silva125a,125d, Y. Silver154, D. Silverstein144, S. B. Silverstein147a V. Simak127, O. Simard5, Lj. Simic13a, S. Simion116, E. Simioni82, B. Simmons77, R. Simoniello90a,90b, M. Simonyan36 P. Sinervo159, N. B. Sinev115, V. Sipica142, G. Siragusa175, A. Sircar78, A. N. Sisakyan64,*, S. Yu. Sivoklokov98 J. Sjölin147a,147b, T. B. Sjursen14, H. P. Skottowe57, K. Yu. Skovpen108, P. Skubic112, M. Slater18, T. Slavicek127 K. Sliwa162, V. Smakhtin173, B. H. Smart46, L. Smestad14, S. Yu. Smirnov97, Y. Smirnov97, L. N. Smirnova98,af

0. Smirnova80, K. M. Smith53, M. Smizanska71, K. Smolek127, A. A. Snesarev95, G. Snidero75, S. Snyder25, R. Sobie170,j

F. Socher44, A. Soffer154, D. A. Soh152,ae, C. A. Solans30, M. Solar127, J. Solc127, E. Yu. Soldatov97, U. Soldevila168 A. A. Solodkov129, A. Soloshenko64, O. V. Solovyanov129, V. Solovyev122, P. Sommer48, H. Y. Song33b, N. Soni1 A. Sood15, A. Sopczak127, B. Sopko127, V. Sopko127, V. Sorin12, M. Sosebee8, R. Soualah165a,165c, P. Soueid94

A. M. Soukharev108c, D. South42, S. Spagnolo72a,72b, F. Spano76, W. R. Spearman57, F. Spettel100, R. Spighi20a

G. Spigo30, L. A. Spiller87, M. Spousta128, T. Spreitzer159, B. Spurlock8, R. D. St. Denis53,*, S. Staerz44, J. Stahlman121 R. Stamen58a, S. Stamm16, E. Stanecka39, R. W. Stanek6, C. Stanescu135a, M. Stanescu-Bellu42, M. M. Stanitzki42 S. Stapnes118, E. A. Starchenko129, J.Stark55, P. Staroba126, P. Starovoitov42, R. Staszewski39, P. Stavina145a,* P. Steinberg25, B. Stelzer143, H. J. Stelzer30, O. Stelzer-Chilton160a, H. Stenzel52, S. Stern100, G. A. Stewart53 J. A. Stillings21, M. C. Stockton86, M. Stoebe86, G. Stoicea26a, P. Stolte54, S. Stonjek100, A. R. Stradling8, A. Straessner44 M. E. Stramaglia17, J. Strandberg148, S. Strandberg147a,147b, A. Strandlie118, E. Strauss144, M. Strauss112, P. Strizenec145b, R. Ströhmer175, D.M.Strom115, R. Stroynowski40, A. Strubig105, S. A. Stucci17, B. Stugu14, N. A. Styles42, D. Su144 J. Su124, R. Subramaniam78, A. Succurro12, Y. Sugaya117, C. Suhr107, M. Suk127, V. V. Sulin95, S. Sultansoy4c T. Sumida67, S. Sun57, X. Sun33a, J. E. Sundermann48, K. Suruliz140, G. Susinno37a,37b, M.R.Sutton150, Y.Suzuki65 M. Svatos126, S. Swedish169, M. Swiatlowski144, I. Sykora145a, T. Sykora128, D. Ta89, C. Taccini135a,135b, K. Tackmann42 J. Taenzer159, A. Taffard164, R. Tafirout160a, N. Taiblum154, H. Takai25, R. Takashima68, H. Takeda66, T. Takeshita141 Y. Takubo65, M. Talby84, A. A. Talyshev108,c, J. Y. C. Tam175, K. G. Tan87, J. Tanaka156, R. Tanaka116, S. Tanaka132 S. Tanaka65, A. J. Tanasijczuk143, B.B.Tannenwald110, N. Tannoury21, S. Tapprogge82, S. Tarem153, F. Tarrade29 G. F. Tartarelli90a, P. Tas128, M. Tasevsky126, T. Tashiro67, E. Tassi37a,37b, A. Tavares Delgado125a,125b, Y. Tayalati136d

F. E. Taylor93, G. N. Taylor87, W. Taylor160b, F. A. Teischinger30, M. Teixeira Dias Castanheira75, P. Teixeira-Dias76 K.K.Temming48, H. Ten Kate30, P. K. Teng152, J. J. Teoh117, S. Terada65, K. Terashi156, J. Terron81, S. Terzo100 M. Testa47, R. J. Teuscher159,j, J. Therhaag21, T. Theveneaux-Pelzer34, J. P. Thomas18, J. Thomas-Wilsker76

E. N. Thompson35, P. D. Thompson18, P. D. Thompson159, R. J. Thompson83, A. S. Thompson53, L. A. Thomsen36, E.Thomson121, M.Thomson28, W. M. Thong87, R.P.Thun88,*, F. Tian35, M. J. Tibbetts15, V. O. Tikhomirov95,ag Yu. A. Tikhonov108,c, S. Timoshenko97, E. Tiouchichine84, P. Tipton177, S. Tisserant84, T. Todorov5, S. Todorova-Nova128

B. Toggerson7, J. Tojo69, S. Tokar145a, K. Tokushuku65, K. Tollefson89, E. Tolley57, L. Tomlinson83, M. Tomoto102 L. Tompkins31, K. Toms104, N. D. Topilin64, E. Torrence115, H. Torres143, E. Torro Pastor168, J. Toth84,ah, F. Touchard84 D. R. Tovey140, H. L. Tran116, T. Trefzger175, L. Tremblet30, A. Tricoli30, I. M. Trigger160a, S. Trincaz-Duvoid79 M. F. Tripiana12, W. Trischuk159, B. Trocme55, C. Troncon90a, M. Trottier-McDonald15, M. Trovatelli135a,135b, P. True89 M. Trzebinski39, A. Trzupek39, C. Tsarouchas30, J. C.-L. Tseng119, P. V. Tsiareshka91, D. Tsionou137, G. Tsipolitis10 N. Tsirintanis9, S. Tsiskaridze12, V. Tsiskaridze48, E. G. Tskhadadze51a, 1.1. Tsukerman96, V. Tsulaia15, S. Tsuno65

D. Tsybychev149, A. Tudorache26a, V. Tudorache26a, A. N. Tuna121, S. A. Tupputi20a,20b, S. Turchikhin98,af, D. Turecek127

I. Turk Cakir4d, R. Turra90a,90b, P. M. Tuts35, A. Tykhonov49, M. Tylmad147a,147b, M. Tyndel130, K. Uchida21

1. Ueda156, R.Ueno29, M. Ughetto84, M. Ugland14, M.Uhlenbrock21, F. Ukegawa161, G. Unal30, A. Undrus25

G. Unel164, F. C. Ungaro48, Y. Unno65, C. Unverdorben99, D. Urbaniec35, P. Urquijo87, G. Usai8, A. Usanova61 L. Vacavant84, V. Vacek127, B. Vachon86, N. Valencic106, S. Valentinetti20a,20b, A. Valero168, L. Valery34, S. Valkar128

E. Valladolid Gallego168, S. Vallecorsa49, J. A. Valls Ferrer168, W. Van Den Wollenberg106, P. C. Van Der Deijl106

R. van der Geer106, H. van der Graaf106, R. Van Der Leeuw106, D. van der Ster30, N. van Eldik30, P. van Gemmeren6 J. Van Nieuwkoop143, I. van Vulpen106, M. C. van Woerden30, M. Vanadia133a,133b, W. Vandelli30, R. Vanguri121 A. Vaniachine6, P. Vankov42, F. Vannucci79, G. Vardanyan178, R. Vari133a, E. W. Varnes7, T. Varol85, D. Varouchas79 A. Vartapetian8, K. E. Varvell151, F. Vazeille34, T. Vazquez Schroeder54, J. Veatch7, F. Veloso125a,125c, S. Veneziano133a A. Ventura72a,72b, D. Ventura85, M. Venturi170, N. Venturi159, A. Venturini23, V. Vercesi120a, M. Verducci133a,133b W. Verkerke106, J. C. Vermeulen106, A. Vest44, M. C. Vetterli143,e, O. Viazlo80, I. Vichou166, T. Vickey146c,ai O. E. Vickey Boeriu146c, G. H. A. Viehhauser119, S. Viel169, R. Vigne30, M. Villa20a,20b, M. Villaplana Perez90a,90b

E. Vilucchi47, M. G. Vincter29, V.B.Vinogradov64, J. Virzi15, I. Vivarelli150, F. Vives Vaque3, S. Vlachos10 D. Vladoiu99, M. Vlasak127, A.Vogel21, M. Vogel32a, P. Vokac127, G. Volpi123a,123b, M. Volpi87, H. von der Schmitt100 H. von Radziewski48, E. von Toerne21, V. Vorobel128, K. Vorobev97, M. Vos168, R. Voss30, J. H. Vossebeld73, N. Vranjes137 M. Vranjes Milosavljevic13a, V. Vrba126, M. Vreeswijk106, T. Vu Anh48, R. Vuillermet30, I. Vukotic31, Z. Vykydal127 P. Wagner21,W. Wagner176,H. Wahlberg70,S. Wahrmund44,J. Wakabayashi102,J. Walder71,R. Walker99,W. Walkowiak142 R. Wall177, P. Waller73, B. Walsh177, C. Wang152,aj, C. Wang45, F. Wang174, H. Wang15, H. Wang40, J. Wang42, J. Wang33a K.Wang86, R.Wang104, S.M.Wang152, T.Wang21, X.Wang177, C. Wanotayaroj115, A. Warburton86, C. P. Ward28 D. R. Wardrope77, M. Warsinsky48, A. Washbrook46, C. Wasicki42, P. M. Watkins18, A. T. Watson18, I.J.Watson151 M.F.Watson18, G.Watts139, S.Watts83, B. M. Waugh77, S. Webb83, M.S.Weber17, S.W.Weber175, J.S.Webster31

A. R. Weidberg119, P. Weigell100, B. Weinert60, J.Weingarten54, C.Weiser48, H. Weits106, P.S.Wells30, T.Wenaus25 D. Wendland16, Z. Weng152,ae, T. Wengler30, S. Wenig30, N. Wermes21, M.Werner48, P.Werner30, M. Wessels58a J.Wetter162, K. Whalen29, A. White8, M. J. White1, R. White32b, S. White123a,123b, D. Whiteson164, D.Wicke176

F. J. Wickens130, W. Wiedenmann174, M. Wielers130, P. Wienemann21, C. Wiglesworth36, L. A. M. Wiik-Fuchs21 P. A. Wijeratne77, A. Wildauer100, M. A. Wildt42,ak, H. G. Wilkens30, J.Z.Will99, H.H.Williams121, S.Williams28

C. Willis89, S. Willocq85, A. Wilson88, J. A. Wilson18, I. Wingerter-Seez5, F. Winklmeier115, B. T. Winter21, M. Wittgen144 T. Wittig43, J.Wittkowski99, S.J. Wollstadt82, M.W.Wolter39, H. Wolters125a,125c, B. K. Wosiek39, J. Wotschack30 M. J. Woudstra83, K. W. Wozniak39, M. Wright53, M. Wu55, S. L. Wu174, X. Wu49, Y. Wu88, E.Wulf35, T. R. Wyatt83

B. M. Wynne46, S. Xella36, M. Xiao137, D. Xu33a, L. Xu33b,al, B. Yabsley151, S. Yacoob146b,am, R. Yakabe66, M. Yamada65 H. Yamaguchi156, Y. Yamaguchi117, A. Yamamoto65, K. Yamamoto63, S. Yamamoto156, T. Yamamura156, T. Yamanaka156 K. Yamauchi102, Y. Yamazaki66, Z. Yan22, H. Yang33e, H. Yang174, U. K. Yang83, Y. Yang110, S. Yanush92, L. Yao33a W.-M. Yao15, Y. Yasu65, E. Yatsenko42, K. H. Yau Wong21, J. Ye40, S. Ye25, I. Yeletskikh64, A. L. Yen57, E. Yildirim42 M. Yilmaz4b, R. Yoosoofmiya124, K. Yorita172, R. Yoshida6, K. Yoshihara156, C. Young144, C. J. S. Young30, S. Youssef22

D. R. Yu15, J. Yu8, J. M. Yu88, J. Yu113, L. Yuan66, A. Yurkewicz107, I. Yusuff28,an, B. Zabinski39, R. Zaidan62 A. M. Zaitsev129,aa, A. Zaman149, S. Zambito23, L. Zanello133a,133b, D. Zanzi100, C. Zeitnitz176, M. Zeman127, A. Zemla38a K. Zengel23, O. Zenin129, T. Zenis145a,D. Zerwas116, G. Zevi della Porta57, D. Zhang88, F. Zhang174, H. Zhang89, J. Zhang6 L. Zhang152, X. Zhang33d, Z. Zhang116, Z. Zhao33b, A. Zhemchugov64, J. Zhong119, B. Zhou88, L. Zhou35, N. Zhou164

C. G. Zhu33d, H. Zhu33a, J. Zhu88, Y. Zhu33b, X. Zhuang33a, K. Zhukov95, A. Zibell175, D. Zieminska60, N. I. Zimine64 C. Zimmermann82, R. Zimmermann21, S. Zimmermann21, S. Zimmermann48, Z. Zinonos54, M. Ziolkowski142

G. Zobernig174, A. Zoccoli20a,20b, M. zur Nedden16, G. Zurzolo103a,103b, V. Zutshi107, L. Zwalinski30

1 Department of Physics, University of Adelaide, Adelaide, Australia

2 Physics Department, SUNY Albany, Albany, NY, USA

3 Department of Physics, University of Alberta, Edmonton, AB, Canada

4 (a) Department of Physics, Ankara University, Ankara, Turkey;(b) Department of Physics, Gazi University, Ankara, Turkey;(c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey;(d) Turkish Atomic Energy Authority, Ankara, Turkey

5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France

6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA

7 Department of Physics, University of Arizona, Tucson, AZ, USA

8 Department of Physics, The University of Texas at Arlington, Arlington, TX, USA

9 Physics Department, University of Athens, Athens, Greece

10 Physics Department, National Technical University of Athens, Zografou, Greece

11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan

12 Institut de Física d'Altes Energies and Departament de Física de la Universitat Autónoma de Barcelona, Barcelona, Spain

13 (a) Institute of Physics, University of Belgrade, Belgrade, Serbia;(b) Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia

14 Department for Physics and Technology, University of Bergen, Bergen, Norway

15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA

16 Department of Physics, Humboldt University, Berlin, Germany

17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland

18 School of Physics and Astronomy, University of Birmingham, Birmingham, UK

19 (a) Department of Physics, Bogazici University, Istanbul, Turkey;(b) Department of Physics, Dogus University, Istanbul, Turkey;(c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey

20 (a) INFN Sezione di Bologna, Bologna, Italy;(b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy

21 Physikalisches Institut, University of Bonn, Bonn, Germany

22 Department of Physics, Boston University, Boston, MA, USA

23 Department of Physics, Brandeis University, Waltham, MA, USA

24 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil;(b) Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil;(c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil;(d) Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil

25 Physics Department, Brookhaven National Laboratory, Upton, NY, USA

26 (a) National Institute of Physics and Nuclear Engineering, Bucharest, Romania;(b) Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania;(c) University Politehnica Bucharest, Bucharest, Romania;(d) West University in Timisoara, Timisoara, Romania

27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

28 Cavendish Laboratory, University of Cambridge, Cambridge, UK

29 Department of Physics, Carleton University, Ottawa, ON, Canada

30 CERN, Geneva, Switzerland

31 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA

32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile;(b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China;(b) Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China;(c) Department of Physics, Nanjing University, Nanjing, Jiangsu, China;(d) School of Physics, Shandong University, Jinan, Shandong, China;(e) Physics Department,, Shanghai Jiao Tong University, Shanghai, China

34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France

35 Nevis Laboratory, Columbia University, Irvington, NY, USA

36 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy;(b) Dipartimento di Fisica, Università della Calabria, Rende, Italy

38 (a) Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland

39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

40 Physics Department, Southern Methodist University, Dallas, TX, USA

41 Physics Department, University of Texas at Dallas, Richardson, TX, USA

42 DESY, Hamburg and Zeuthen, Germany

43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

45 Department of Physics, Duke University, Durham, NC, USA

46 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK

47 INFN Laboratori Nazionali di Frascati, Frascati, Italy

48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

49 Section de Physique, Université de Genève, Geneva, Switzerland

50 (a) INFN Sezione di Genova, Genoa, Italy;(b) Dipartimento di Fisica, Università di Genova, Genoa, Italy

51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia;(b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

53 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK

54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France

56 Department of Physics, Hampton University, Hampton, VA, USA

57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA

58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany;(b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany;(c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

60 Department of Physics, Indiana University, Bloomington, IN, USA

61 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

62 University of Iowa, Iowa City, IA, USA

63 Department of Physics and Astronomy, Iowa State University, Ames, IA, USA

64 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

65 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

66 Graduate School of Science, Kobe University, Kobe, Japan

67 Faculty of Science, Kyoto University, Kyoto, Japan

68 Kyoto University of Education, Kyoto, Japan

69 Department of Physics, Kyushu University, Fukuoka, Japan

70 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

71 Physics Department, Lancaster University, Lancaster, UK

72 (a) INFN Sezione di Lecce, Lecce, Italy;(b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

73 Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK

74 Department of Physics, Jozef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

75 School of Physics and Astronomy, Queen Mary University of London, London, UK

76 Department of Physics, Royal Holloway University of London, Surrey, UK

77 Department of Physics and Astronomy, University College London, London, UK

78 Louisiana Tech University, Ruston, LA, USA

79 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

80 Fysiska institutionen, Lunds universitet, Lund, Sweden

81 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain

82 Institut für Physik, Universität Mainz, Mainz, Germany

83 School of Physics and Astronomy, University of Manchester, Manchester, UK

84 CPPM,Aix-Marseille Université and CNRS/IN2P3, Marseille, France

85 Department of Physics, University of Massachusetts, Amherst, MA, USA

86 Department of Physics, McGill University, Montreal, QC, Canada

87 School of Physics, University of Melbourne, Parkville, VIC, Australia

88 Department of Physics, The University of Michigan, Ann Arbor, MI, USA

89 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA

90 (a) INFN Sezione di Milano, Milan, Italy;(b) Dipartimento di Fisica, Università di Milano, Milan, Italy

91 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus

92 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus

93 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA

94 Group of Particle Physics, University of Montreal, Montreal, QC, Canada

95 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia

96 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia

97 Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

98 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

99 Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany

100 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany

101 Nagasaki Institute of Applied Science, Nagasaki, Japan

102 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan

103 (a) infN Sezione di Napoli, Naples, Italy;(b) Dipartimento di Fisica, Università di Napoli, Naples, Italy

104 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA

105 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands

106 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands

107 Department of Physics, Northern Illinois University, DeKalb, IL, USA

108 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia

109 Department of Physics, New York University, New York, NY, USA

110 Ohio State University, Columbus, OH, USA

111 Faculty of Science, Okayama University, Okayama, Japan

112 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA

113 Department of Physics, Oklahoma State University, Stillwater, OK, USA

114 Palacky University, RCPTM, Olomouc, Czech Republic

115 Center for High Energy Physics, University of Oregon, Eugene, OR, USA

116 LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

117 Graduate School of Science, Osaka University, Osaka, Japan

118 Department of Physics, University of Oslo, Oslo, Norway

119 Department of Physics, Oxford University, Oxford, UK

120 (a) infN Sezione di Pavia, Pavia, Italy;(b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy

121 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA

122 Petersburg Nuclear Physics Institute, Gatchina, Russia

123 (a) INFN Sezione di Pisa, Pisa, Italy;(b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy

124 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA

125 (a) Laboratorio de Instrumentacao e Fisica Experimental de Particulas-LIP, Lisbon, Portugal;(b) Faculdade de Ciencias, Universidade de Lisboa, Lisbon, Portugal; (c) Department of Physics, University of Coimbra, Coimbra, Portugal; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e) Departamento de Fisica, Universidade do Minho, Braga, Portugal; (f) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal

126 Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic

127 Czech Technical University in Prague, Prague, Czech Republic

128 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic

129 State Research Center Institute for High Energy Physics, Protvino, Russia

130 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK

131 Physics Department, University of Regina, Regina, SK, Canada

132 Ritsumeikan University, Kusatsu, Shiga, Japan

133 (a) INFN Sezione di Roma, Rome, Italy;(b) Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy

134 (a) INFN Sezione di Roma Tor Vergata, Rome, Italy;(b) Dipartimento di Fisica, Università di Roma Tor Vergata, Rome, Italy

135 (a) INFN Sezione di Roma Tre, Rome, Italy;(b) Dipartimento di Matematica e Fisica, Università Roma Tre, Rome, Italy

136 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco;(b) Centre National de l'Energie des Sciences Techniques Nucleaires, Rabat, Morocco;(c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco;(d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; (e) Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco

137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l'Univers), CEA Saclay (Commissariat à l'Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France

138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA

139 Department of Physics, University of Washington, Seattle, WA, USA

140 Department of Physics and Astronomy, University of Sheffield, Sheffield, UK

141 Department of Physics, Shinshu University, Nagano, Japan

142 Fachbereich Physik, Universität Siegen, Siegen, Germany

143 Department of Physics, Simon Fraser University, Burnaby, BC, Canada

144 SLAC National Accelerator Laboratory, Stanford, CA, USA

145 (a) Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic;(b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic

146 (a) Department of Physics, University of Cape Town, Cape Town, South Africa;(b) Department of Physics, University of Johannesburg, Johannesburg, South Africa;(c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa

147 (a) Department of Physics, Stockholm University, Stockholm, Sweden;(b) The Oskar Klein Centre, Stockholm, Sweden

148 Physics Department, Royal Institute of Technology, Stockholm, Sweden

149 Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA

150 Department of Physics and Astronomy, University of Sussex, Brighton, UK

151 School of Physics, University of Sydney, Sydney, Australia

152 Institute of Physics, Academia Sinica, Taipei, Taiwan

153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel

154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel

155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan

157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan

158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

159 Department of Physics, University of Toronto, Toronto, ON, Canada

160 (a) TRIUMF, Vancouver, BC, Canada;(b) Department of Physics and Astronomy, York University, Toronto, ON, Canada

161 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

162 Department of Physics and Astronomy, Tufts University, Medford, MA, USA

163 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia

164 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA

165 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy;(b) ICTP, Trieste, Italy;(c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy

166 Department of Physics, University of Illinois, Urbana, IL, USA

167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain

169 Department of Physics, University of British Columbia, Vancouver, BC, Canada

170 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada

171 Department of Physics, University of Warwick, Coventry, UK

172 Waseda University, Tokyo, Japan

173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel

174 Department of Physics, University of Wisconsin, Madison, WI, USA

175 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

176 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany

177 Department of Physics, Yale University, New Haven, CT, USA

178 Yerevan Physics Institute, Yerevan, Armenia

179 Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King's College London, London, UK b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan c Also at Novosibirsk State University, Novosibirsk, Russia d Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK e Also at TRIUMF, Vancouver, BC, Canada

f Also at Department of Physics, California State University, Fresno, CA, USA

g Also at Tomsk State University, Tomsk, Russia

h Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France i Also at Università di Napoli Parthenope, Naples, Italy j Also at Institute of Particle Physics (IPP), Victoria, Canada

k Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia l Also at Chinese University of Hong Kong, Hong Kong, China

m Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece n Also at Louisiana Tech University, Ruston, LA, USA

0 Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain p Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA q Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia

r Also at CERN, Geneva, Switzerland

s Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan

1 Also at Manhattan College, New York, NY, USA

u Also at Institute of Physics, Academia Sinica, Taipei, Taiwan v Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France

w Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan x Also at Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

y Also at School of Physical Sciences, National Institute of Science Education and Research, Bhubaneswar, India z Also at Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy aa Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia ab Also at Section de Physique, Université de Genève, Geneva, Switzerland ac Also at International School for Advanced Studies (SISSA), Trieste, Italy ad Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA ae Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China af Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia ag Also at Moscow Engineering and Physics Institute (MEPhI), Moscow, Russia

ah Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary ai Also at Department of Physics, Oxford University, Oxford, UK aj Also at Department of Physics, Nanjing University, Jiangsu, China ak Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany al Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA am Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa an Also at Department of Physics, University of Malaya, Kuala Lumpur, Malaysia * Deceased