Genetic relationships between skarn ore deposits and magmatic activity in the Ahar region, Western Alborz, NW Iran

HABIB MOLLAI1, GEORGIA PE-PIPER2 and RAHIM DABIRI1

1Department of Geology, Mashhad Branch, Islamic Azad University, Mashhad, Iran; mollai@mshdiau.ac.ir
2Department of Geology, Saint Mary’s University, Halifax, Nova Scotia, Canada B3H 3C3

Abstract: Paleocene to Oligocene tectonic processes in northwest Iran resulted in extensive I-type calc-alkaline and alkaline magmatic activity in the Ahar region. Numerous skarn deposits formed in the contact between Upper Cretaceous impure carbonate rocks and Oligocene–Miocene plutonic rocks. This study presents new field observations of skarns in the western Alborz range and is based on geochemistry of igneous rocks, mineralogy of the important skarn deposits, and electron microprobe analyses of skarn minerals. These data are used to interpret the metasomatism during sequential skarn formation and the geotectonic setting of the skarn ore deposit related igneous rocks. The skarns were classified into exoskarn, endoskarn and ore skarn. Andraditic garnet is the main skarn mineral; the pyroxene belongs to the diopside-hedenbergite series. The skarnification started with pluton emplacement and metamorphism of carbonate rocks followed by prograde metasomatism and the formation of anhydrous minerals like garnet and pyroxene. The next stage resulted in retrogradation of anhydrous minerals along with the formation of oxide minerals (magnetite and hematite) followed by the formation of hydrous minerals like epidote, actinolite, chlorite, quartz, sericite and sulfide mineralization. In addition to Fe, Si and Mg, substantial amounts of Cu, along with volatile components such as H2S and CO2 were added to the skarn system. Skarn mineralogy and geochemistry of the igneous rocks indicate an island arc or subduction-related origin of the Fe-Cu skarn deposit.

Key words: Late Cenozoic, granodiorite, magmatic, skarn, garnet, epidote, sulfide, Iran.

Methods

Field work included geological mapping, delineating the igneous bodies, the skarn and marble contact. Sampling traverses were done across the skarn and host rocks. More
than 100 samples were collected from different rock types and locations. Some representative samples were thin and polished-sectioned and examined microscopically. Electron probe micro-analysis (EPMA) was used to determine mineral compositions of various skarn minerals like garnet, epidote, pyroxene and actinolite, in the Iranian Mineral Processing Research Center (IMPRC), Karaj town. Selected samples for whole-rock geochemical analysis were pulverized using a shatter box with an iron bowl. These powders were analysed in Activation Laboratories Canada according to their Code 4Litho research and Code 4B1 packages, which combine lithium metaborate/tetraborate fusion major element analysis with a trace element ICP-MS package. Fluid inclusion studies were conducted on more than 50 doubly polished plates using a Leitz 1350 heating stage, a SGE gas flow heating/cooling system based on a U.S. Geological Survey design (Hollister et al. 1981), and a Chaixmeca stage at the Fluid Inclusion Laboratory of the Wadia Institute of Himalayan Geology, Dehra Dun, India, and the Department of Earth Sciences, Indian Institute of Technology, Mumbai, India.

Magmatic activities in the Ahar Region

A belt of skarn porphyry Cu deposits of late Tertiary age extends from the Caucasus Mountains to the Alborz unit in the Azerbaijan region of NW Iran and includes the well-known Sungun, Mazar, Anjered porphyry skarn deposits (Mollai 1993). All of these deposits are related to the Cenozoic magmatic activity; the Eocene–Oligocene period can be considered as a metallogenic epoch that formed the Alborz–Azerbaijan magmatic belt. Large Cu-Mo porphyry deposits, Cu skarn occurrences, and Cu-Mo-Au porphyry — vein deposits in this area attest to the economic value and potential of mineralization in this magmatic belt (Jamali et al. 2010).

There are three parallel magmatic arcs in the northwest of Iran, of Cretaceous and Eocene–Miocene to Quaternary ages, trending in a NW–SE direction between the Main Thrust zone in the southwest and the Tabriz Fault in the northeast (Azizi & Moinevaziri 2009). Major tectono-magmatic events in northwestern Iran are the result of geodynamic evolution of Tethys belt that formed between the Arabian and Eurasian plates during the Early Mesozoic to Late Cenozoic orogeny (Aghanabati 1993). Among these magmatic activities in the area of study, the Ahar Batholith and the Sungun porphyry stock are the most important. The host rocks have a calc-alkaline, I-type chemical composition of a continental arc geotectonic setting (Fig. 2). The Ahar batholith, which extends about 30 km E–W and is 3 to 10 km wide from north to south, ranges from granite to granodiorite (Fig. 2). The batholith was responsible for mineralization, skarnification and hornfels at its margins. The granodiorite pluton has been affected by a number of later magmatic activities which include various types of quartz, aplite, and pegmatite veins, hypabyssal and mafic dykes, as well as Quaternary volcanic products. There are more than five volcanic masses belonging to Quaternary episodes within the plutonic body of Oligocene age. These igneous activities do not form a single large central volcano. Two mineralized mafic dykes have been noted in the eastern part of Javanshykh village. Malachite as a secondary mineral is distributed within the main body in different forms (Fig. 3b).

The stock of Oligo-Miocene age, which ranges in composition from quartz monzonite to granite, hosting the Sungun Copper Porphyry deposit (Mehrpartou & Torkian 1994; Hezarkhani et al. 1999; Calagari & Hosseinzadeh 2006a) shows a calc-alkaline, I-type chemical composition of a continental arc geotectonic setting. The stock is located about 100 km NE of Tabriz and 85 km NW of Ahar, crops out over an area of about 1.5 by 2.3 km (Calagari 2004) (Fig. 2), and intruded a series of Eocene arenaceous-argillaceous and Upper Cretaceous carbonate rock sequences. The stock consists of three different intrusive phases: (1) monzonite-quartz monzonite, (2) diorite-granodiorite and (3) andesite and re-

GEOLOGICA CARPATHICA, 2014, 65, 3, 207–225
Fig. 2. Part of the Ahar quadrangle geological map (Geological Survey of Iran, 1978), showing distribution of extrusive and intrusive rocks and related skarn deposits in the Ahar region. a — Mazraeh Cu-Fe and Gharanagh Daragh skarn deposit which has an elliptical shape striking W–E direction; b — Anjered skarn deposit looks like an arc striking almost N–S; c — Geological map of Sungun representing the exploratory drifts. In the Sungun skarn porphyry some patches of skarn occur xenoliths within the granodiorite (modified after Mehrpartou 1993; Mollai 1993, 2009; Calagari & Hossainzadeh 2006).
lated dykes (Etminan 1978; Mehrpartou & Torkian 1994; Hezarkhani & Williams-Jones 1998; Hezarkhani et al. 1999; Karimzadeh Somarin 2004). The diorite-granodiorite is volumetrically the next most important and hosts most of the mineralization. These intrusive phases are cut by monzonite and andesitic dykes, which in the northern and eastern parts of the Sungun stock are locally mineralized. A comparison of these granodioritic rocks related to the Cu-Fe skarn deposits in the north west of Iran with other granodioritic rocks related to Cu, Fe and Cu-Au skarn deposits in the world (Table 1) indicates that most of them have similar mineralogy and chemical composition with orthomagmatic mineralization. The host rocks show a calc-alkaline, I-type chemical composition of a continental arc geotectonic setting.

Geology of skarn deposits

Skarn ore deposits in the Alborz range of northwest Iran formed at or near the contact of Tertiary (Oligo-Miocene) magmatic bodies with Cretaceous impure limestone. Both endoskarn and exoskarn are developed along the contact with ore skarn in between as a discontinuous belt. At the contact between the Ahar granodiorite and Cretaceous carbonate rocks the earliest changes observed in the protolith involve recrystallization to coarse grained crystalline marble and fine-grained, dark grey-green hornfels, with an assemblage of clinopyroxene-feldspar-quartz. The endoskarns are very restricted to narrow strips, developed towards the plutonic rocks. Endoskarn indicates the fluid flowed through the plutonic rocks and replaced aluminosilicate minerals along the contact with Cretaceous carbonate rock. Most of the endoskarns are very thin with maximum thickness of a few meters, whereas the thickness of endoskarn in the Elebi District reaches up to 50 m. In general, all of these skarn deposits, irrespective of their size and shape, have sharp contacts with both the intrusive body as well as the crystalline limestone and have almost the same mineral composition. Among these skarn deposits the most important are (1) Mazraeh Cu-Fe skarn deposit, (2) Anjerd Cu skarn and (3) Sungun Cu-Mo skarn, (Fig. 2). These skarn deposits in the field and hand specimens show various colours from dark brown to greenish depending on their mineralogy. In most places the metasomatism is so intense that the original...
Table 1: Comparison of granodiorite related to the Cu-Mo and Cu-Fe skarn deposits of the Ahar region NW Iran, with the granodiorite related to the skarn deposit of other parts of the world.

<table>
<thead>
<tr>
<th>Deposit</th>
<th>Size(t)</th>
<th>Grade</th>
<th>Metal</th>
<th>Associated igneous rocks</th>
<th>Host rock</th>
<th>Early minerals</th>
<th>Late minerals</th>
<th>Ore minerals</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mazraeh Cu, Fe</td>
<td>40,000 t</td>
<td>1.2 % Cu and Fe</td>
<td>Cu and Fe</td>
<td>Granodiorite</td>
<td>Impure carbonate and granodiorite</td>
<td>Pyroxene, garnet</td>
<td>Epidote, chlorite, calcite, sericite</td>
<td>Cp, py, nt and hem</td>
<td>Mollai 1993, 2009</td>
</tr>
<tr>
<td>Sungun</td>
<td>1bt</td>
<td>0.62 % Cu and 0.01 % Mo</td>
<td>Cu and Mo</td>
<td>Diorite/ granodiorite to quartz-monzonite</td>
<td>granodiorite to monzonite and impure carbonate rocks</td>
<td>Pyroxene, garnet</td>
<td>Epidote, chlorite, calcite, sericite</td>
<td>Cp, mo, py, bor and chal</td>
<td>Etminan 2012</td>
</tr>
<tr>
<td>Anjerd</td>
<td>20,000 t</td>
<td>0.8 % Cu</td>
<td>Cu</td>
<td>Granodiorite quartz-monzonite</td>
<td>granodioritic and impure carbonate rocks</td>
<td>Pyroxene, garnet</td>
<td>Actinolite, epidote, chlorite, calcite and quartz</td>
<td>Cp, py, mt</td>
<td>Mollai 2009/unpubl. proj.</td>
</tr>
<tr>
<td>Daquiri, Cuba</td>
<td>100 m.t.</td>
<td>Mainly Fe</td>
<td>Fe</td>
<td>Diorite, Limestone</td>
<td>Diorite, limestone blocks</td>
<td>Pyroxene, garnet</td>
<td>Ep, cal, qz</td>
<td>Mt, hem, (py, cp.)</td>
<td>Lindgren & Ross 1916</td>
</tr>
<tr>
<td>Peschansk Ural</td>
<td>173 m.t.</td>
<td>50 % Fe; Fe,Cu</td>
<td>Fe,Cu</td>
<td>Diorite</td>
<td>Tuff, sandstone, andesite, limestone</td>
<td>Garnet, pyroxene</td>
<td>Epidote, chlorite, calcite, diopside, sericite</td>
<td>Magnetite, minor chalcopyrite</td>
<td>Sokolov & Grigorev 1977</td>
</tr>
<tr>
<td>Bagirkac</td>
<td>250,000 t</td>
<td>7 % Pb</td>
<td>Ph, Zn, Cu</td>
<td>Granite, granodiorite of Eybek Pluton</td>
<td>Skarn after calcareous, marble bearing schist</td>
<td>Wo, ad-gr, di-hd, scp</td>
<td>Cal, tr</td>
<td>Mt, cu, cubanite, pyrrh, sph</td>
<td>Dora 1971</td>
</tr>
<tr>
<td>Shinyama Japan</td>
<td>10,000,000 t</td>
<td>Fe 30–35 % Fe Cu ore 30–35 % Cu 1 %</td>
<td>Fe-cp, py, sph</td>
<td>granodiorite of Sanli Pluton</td>
<td>Basaltic andesite, limestone</td>
<td>Ad-gr, di-hd</td>
<td>Act, qz, tourmaline, tr, cal, ep</td>
<td>Mt, cp, cubanite, pyrrh, sph</td>
<td>Tsusue 1961; Kanaeda et al. 1978</td>
</tr>
<tr>
<td>Bingham Utah</td>
<td>100,000,000 t</td>
<td>3.2% Cu, 0–03% Mo</td>
<td>Fe</td>
<td>Monzonite to Quartz monzonite</td>
<td>Calc-silicate hornfels after metamorphic rocks</td>
<td>Ad-gr, di-hd</td>
<td>Ep, cal, amp</td>
<td>Cp, py, born</td>
<td>Atkinson & Einaudi 1978; Sweeney 1980</td>
</tr>
<tr>
<td>Evciler Kazdag</td>
<td>no estimate</td>
<td>Au (up to 14 ppm) in pyrrhotite</td>
<td>Fe</td>
<td>Granodiorite to quartz diorite of Evciler Pluton</td>
<td>Hornfels after metamorphic rocks, skarn after limestone</td>
<td>Ad,gr, di-hd, scp,py</td>
<td>Ep,cal,amp, chl, qz</td>
<td>Po, py, cp</td>
<td>Oztruk et al. 2005; Oztruk et al. 2008</td>
</tr>
<tr>
<td>Shinyama mine, Japan</td>
<td>>10 m.t.</td>
<td>30–35% Fe, 0.1% Cu</td>
<td>Fe–Cu</td>
<td>Diorite-granodiorite dykes, stock</td>
<td>Basaltic andesite, dacite, Permian black slate, limestone</td>
<td>Gr, di, fer</td>
<td>Epidote, amphibole, actinolite, quartz, magnetite; in marble: pageite, tourmaline, magnetite, calcite, phlogopite</td>
<td>Mt; minor cp, cub, pyrrh, sph, trace pentlandite, vallerite, arsenopyrite, comackinawite</td>
<td>Tsusue 1961; Kanaeda et al. 1978</td>
</tr>
<tr>
<td>Ayazmant Ayailik Turkey</td>
<td>5,750,000 t</td>
<td>46% Fe and 0.6% Cu</td>
<td>Fe–Cu</td>
<td>Granodioritic to monzodioritic porphyries of Kozak Plutonic Complex</td>
<td>Hornfels after regional metamorphic rocks with carbonate lenses and intercalations, skarn after limestone lenses</td>
<td>Di, ad-gr, scp</td>
<td>Ep, amp, py, or, chl, cal, qz</td>
<td>Mt, cp, py, bn, mo, go, hem, po, gn, sp, various Au-Ag-Se minerals</td>
<td>Tolga Oyman 2010</td>
</tr>
</tbody>
</table>

The structural set up of the Mazraeh mine is an elliptical shaped mega enclaves of meta-sedimentary rocks within the Mazraeh granodiorite, with the 1.5 km long major axis striking E-W and the 1.0 km long minor axis running in N–S. The character of the Cretaceous carbonate rocks as well as the igneous rocks are unrecognizable. The skarn deposit in the area reveals that after a hot gaseous stage, there was hydrothermal activity which resulted in the alteration of igneous rocks.
direction (Fig. 2a). The southern contact between the granodiorite and crystalline limestone is steeply dipping (60° to 70°S) and is sub-concordant, transecting the limestone beds (striking E-W, dipping S). The width of skarn here ranges from 2 to 25 m, except where a granodiorite tongue cuts across the limestone and the skarn width is 50 m. Exoskarn is the principal skarn zone enclosed by the marmorized- and endo-skarn zones. A vein of wollastonite with a NE-SW direction and thickness of about 50 cm, occurs in the north east of the mine within the crystalline limestone. Fig. 2 shows the zonal arrangement of skarn deposits (Mollai 1993). The mine is now (summer 2012) abandoned.

The Anjered Cu skarn deposit is located at the western limit of the Ahar batholith (Fig. 2). The structural setup of the Anjered skarn deposit is a semi elliptical shape, with 1 km long major axis striking almost N–S along the contact of igneous rocks and 500 m thickness of minor axis running in a W–E direction (Fig. 2b). In most of the places near the contact with granodiorite, the skarn is covered by loose eroded material. Therefore the size of the Anjered skarn in such places may be underestimated. The remains of old tunnels in the contact between the granodiorite and impure carbonate rocks show that mining activities have been carried out in the past.

The intrusion of Oligo-Miocene porphyry granodiorite of Sungun into the impure limestone of Cretaceous rocks led to the formation of the Cu-Mo skarn deposit, recrystallizing the impure limestone and hornfels in the east Sungun river (Fig. 2c). Skarn-type metasomatic alteration and mineralization occurs along the contact between Upper Cretaceous impure carbonates and an Oligo-Miocene Cu-bearing porphyry stock. The structural setup of Sungun porphyry is a narrow zone with the thickness of 55 m to 60 m. Both endoskarn and exoskarn are developed along the contact. Exoskarn is the principal skarn zone enclosed by marmorized carbonates and skarnoid hornfelses. Petrographic studies in the Sungun area show that the mineralized dikes are mainly andesitic and are related to the diorite-granodiorite intrusive phase, whereas the andesite dykes in Mazraeh are barren. Molybdenum was concentrated at a very early stage in the evolution of the hydrothermal system and copper somewhat later. Four distinct types of hypogene alteration are easily distinguished as follows: 1) Potassic, 2) Potassic-phyllic, 3) Phyllic, 4) Propylitic (Mehrpartou & Torkian 1994). The metamorphic rocks along with bimetasomatic skarns occur in the Mazraeh and Sungun skarn deposits, but this phenomenon was not clearly observed in Anjered. The portion of metamorphic interlayering of bimetasomatized zones varies in thickness from 70 to 120 m in Sungun (Calagari & Hosseinzadeh 2006b) and 50 to about 200 m in the Mazraeh skarn deposit. This zone in both skarn deposits lies between exoskarn and impure Late Cretaceous carbonate rocks. These rocks, in addition to being thermally metamorphosed, have been bimetasomatized and have also produced bimetasomatic skarn (Einaudi et al. 1981). At a relatively long distance from the contact of magma, this heat source caused the development of ne-grained anhydrous calc-silicates (mainly isotropic garnet and pyroxene) within the clay-rich inter-layers in the impure carbonates. Some amounts of hydrous silicates like biotite, amphibole, epidote and chlorite are present; these minerals are the retrograde products. The thickness of these bimetasomatized layers never reaches more than 10 cm. In the north and north east of the Mazraeh skarn deposit, various types of folding are present, which are due to syntectonic conditions in the impure carbonate rocks. In the bimetasomatic skarn, brownish elephant skin structures occur as a result of deep weathering of crystalline limestone leaving residual metasomatized minerals.

Petrography and mineralogy

Petrography and mineralogy of igneous rocks

Texturally the granodiorite is coarse grained and porphyritic. Its modal composition ranges are 6–15 % quartz, 24–43 % plagioclase, 20–48 % K-feldspar, 0–10 % hornblende, 0–5 % biotite, and 0–3 % each of apatite, sphene and magnetite. Micro diorite rock contains large isolated crystals (phenocrysts) of plagioclase and hornblende in a mass of fine textured crystals in which they develop a porphyritic texture (Fig. 4a–d). Some feldspars display poikilitic textures and perthitic and myrmekitic intergrowths were recognized in some samples. Alkali feldspar in places jackets the plagioclase laths, which is indicative of their order of crystallization. Veins of both quartz and calcite cut the granodiorite. According to XRD and microprobe analyses, the plagioclase is the most abundant mineral and ranges from albite to oligoclase. K-feldspar has been confirmed as orthoclase and plagioclase crystals are lath-shaped, unzoned or zoned with both albite-type and pericline twinning. Plagioclase shows a paragenetic relationship with sphene. Feldspar minerals are partially to entirely altered to sericite, and biotite has changed to chlorite, muscovite and opaque minerals. (Fig. 4b,c). Porphyritic texture indicates that a magma has gone through a two stage cooling process. Pyrite and chalcopyrite are the most abundant sulphide minerals present in the porphyritic stock of Sungun. The quartz grains are present in varying sizes, some with inclusions of feldspar, biotite, apatite, sphene and magnetite. Sphene is a very common accessory mineral, occurring as anhedral to well developed euhedral lozenge-shaped grains with high relief (Fig. 4d). They are associated with epidote, biotite, rutile, and opaque minerals.

Thin section studies of samples from the Sungun porphyry host rocks show porphyritic texture, containing phenocrysts of plagioclase, K-feldspar, quartz and biotite. In some altered rocks feldspar minerals are partially to entirely altered to sericite, and biotite has changed to chlorite, muscovite and relics of opaque minerals. Thin section studies show two types of opaque mineral, the first type is primary mineral and the second one is the altered product of mafic minerals. Most of opaque minerals in Sungun porphyry are sulphide minerals (pyrite, chalcopyrite, molybdenite, blende and galena) whereas the opaque minerals in Mazraeh granodiorite are mainly magnetite. The mineralized dikes are mainly andesitic and are related to the diorite-granodiorite intrusive phase. These deposits reveal that after a hot gaseous stage, there was hydrothermal activity which resulted in the alteration of igneous rocks.
Fig. 4. Microphotographs of thin sections for various rocks of the studied area. a — Micro-diorite with porphyritic texture, groundmass of orthoclase, plagioclase and some grains of quartz and well-developed large grains of hornblende and bladed plagioclase. Some of the hornblende shows twinning; b — Granodiorite with subhedral to anhedral large grains of hornblende along with plagioclase and alkali feldspars and a few grains of quartz. Felsic minerals do not show alteration, however, hornblendes are altered; c — Granodiorite in which hornblende is partially included within alkali feldspar, with sphene and magnetite as inclusions within the hornblende. Secondary muscovite replaces alkali feldspar and hornblende; d — Rock contains mainly large grains of alkali feldspar and sphene along with some quartz. Well developed sphene grain is euhedral, surrounded by alkali feldspar (AfS); e — Pyroxene-garnet exoskarn: garnet is medium grained and isotropic, whereas pyroxene shows well developed grains with porphyroblastic texture and minor alteration to actinolite; f — Bimetasomatic skarn under ppl showing interlayering of garnet skarn with calcite as well as alteration of garnet (Grt) to chlorite (Chl); g — Coarse-grained wollastonite vein occurring within the crystalline limestone in the northern part of the Mazraeh Cu-Fe mine; h — Coarse-grained altered clinopyroxene within isotropic garnet indicates an earlier formation of the pyroxene.
Skarn mineralogy

In general the dominant calc silicate (skarn) minerals in the area are garnet, calcite, pyroxene, actinolite and epidote, which are accompanied by quartz, feldspar, minor vesuvianite and hornblende. These skarn deposits can be petrologically classified into: (I) Exoskarn, (II) Endoskarn and (III) Ore skarn. Each of the skarn types can be further divided on the basis of their mineral assemblage. In general, the rocks in this zone contain principally ne-grained granoblastic calcite (50–98 %), garnet (0–35 %), pyroxene (0–10 %), epidote (0–5 %), chlorite (0–2 %), clays (1–3 %), and sulphides (<0.5 %) (Calagari & Hosseinzadeh 2006a).

(I) Exoskarn: The exoskarn is developed within the country rock and the bimetasomatic skarn (Einaudi et al. 1981; Einaudi & Burt 1982; Kwak & Kwak 1987). The alteration of the host rock (impure carbonate and igneous rocks) in the Ahar region is marked by the formation of coarsely crystalline skarn bands due to the introduction of Si-, Al-, Fe-, and Mg-rich fluids into the host rock. Metasomatism of carbonate in the Ahar region produced andradite- grossular/pyroxene exoskarn, as components of the prograde assemblage, and epidote, tremolite/actinolite, chlorite and/or calcite and quartz as components of the retrograde mineral assemblage with few grains of vesuvianite (Fig. 4a,b and c). The skarn shows porphyroblastic, poikiloblastic brecciation, overprinting and in some cases cataclastic textures. Pyroxene shows porphyroelastic texture alteration with actinolite (Fig. 4e). There are at least two generations for most of the minerals especially garnet, quartz, calcite, chlorite, magnetite and chalcopyrite. For example, garnet occurs at least in three generations with different geological and optical properties. Garnets range in size from 0.1 mm up to 4 cm in diameter, showing fine to coarse grains of isotropic and concentric, oscillatory zoning of anisotropic garnet (Fig. 4h). Most of the pyroxene minerals were replaced by garnet. Idiomorphic, twinned epidote occurs in exoskarn as well as in endoskarn (Fig. 5e,f). Very well developed, coarse grains of wollastonite occurring as a vein within the crystalline limestone in the north-east of the Mazraeh skarn deposit show porphyroelastic texture (Fig. 4g).

Actinolite mineral, which is the altered product of pyroxene and garnet minerals, is more predominant in the Anjerd skarn actinolite is more abundant.

(III) Ore skarn: The early-formed calc-silicate minerals were later texturally replaced by oxides (magnetite, hematite), followed by sulphides (chalcopyrite, pyrite, covellite, bornite, galena, sphalerite and molybdenite), hydro silicate (actinolite, epidote, chlorite and sericite) and carbonates (calcite, ankerite and siderite). Oxides in the Cu Sungun and Anjerd skarn deposits are not predominant minerals, in contrast to the Cu-Fe Mazraeh skarn deposit.

The ore-forming fluids were initially thought to be of magmatic origin only. Sulphur and oxygen are among the most important volatiles which play a significant role in the formation of hydrothermal sulphide and oxide deposits (Schwertmann 1995). Magnetite shows replacement texture, including relics of replaced minerals like garnet, calcite and sometimes feldspar. In addition magnetite is intercrystalline as well as intracrystalline with garnet. Garnet usually shows corrosion boundaries with magnetite depicting reaction. In places, magnetite shows cataclastic texture with numerous fractures, which are filled by third generation minerals like quartz, calcite and sometimes chalcopyrite. In such conditions we can see various veins of magnete, sulphide and quartz (Fig. 6a). The martitization of magnetite is quite common, and is due to the changes of oxygen fugacity (Fig. 6b). It occur as lamellar plates along octahedral planes, fractures, zonal growth planes and outer margins, where hematite is comparatively thicker (Mollai et al. 2009). Where the degree of martitization is extensive, magnetite occurs as relics. Chalcopyrite is the most common sulphide in these skarn deposits, along with bornite, and molybdenite in the Sungun deposit. In the Sungun porphry, sulphides occurring within the feldspar altered zone are disseminated, while in the phyllic zone they occur as veins. The argillic zone has low grade disseminated ores. More specifically the metallic ores present, in decreasing order of abundance, are: chalcopyrite, pyrite, bornite, molybdenite and pyrrhotite, with minor copper (Mehrpartou 1993; Mollai 1993; Calagari & Hosseinzadeh 2006a).

Chalcopyrite associates closely with bornite and also partially to fully replaces magnetite, sometimes re-
Fig. 5. Microphotographs showing the mineralogy and textures of endoskarn. a — xpl and b — ppl — showing replacement of primary igneous minerals like plagioclase and feldspar by pyroxene and some garnet. Coarse and euhedral to subhedral porphyritic pyroxene overgrows the igneous minerals. Magnetite is of two types: primary and secondary, the latter due to alteration of pyroxene. The groundmass is mainly very fine grained minerals; c — Pyroxene-garnet-actinolite endoskarn with porphyroblastic texture (xpl); d — Fine grains of epidote, actinolite and opaque minerals overgrown on igneous mineral during retrograde skarn formation, leading to the formation of feldspar-epidote-actinolite endoskarn (xpl); e, f — Epidote sulphide skarn, with chlorite and quartz formed by alteration of anhydrous minerals like garnet and pyroxene. (Epidote with well developed zoning and twinning along with porphyroblastic texture showing its replacement by sulphide ores.)

Mineral chemistry of skarn minerals

Garnet

According to EPMA data the andradite mole fraction in the garnet ranges from 30–99 %, followed by grossularite (0–57 %), and pyralspite (0–13 %) (Table 2). The composition of garnet appears to be controlled by the chemistry of the replaced mineral: garnet replacing plagioclase is richer in grossularite and that replacing pyroxene and calcite is richer in andradite. Within the ugrandite area, the pyralspite content increases with increasing substitution of Mg and Mn for Ca and the grossular content increases with increasing sub-
stitution of Al^{+3} for Fe^{+3}. In the veins the major cations are Ca^{+2} and Fe^{+3} and the andradite component predominates (>99 %) (Table 3). A notable feature of this vein garnet is the excess of Ca, which is due to the deficiency in Si solid solution (Table 3). The Ayazmant Fe-Cu skarn of Turkey and Kamaish Fe skarn of Japan are richer in grossularite in comparison with the Ahar skarn deposits (Fig. 7). Garnet with 30 to 99 ‰ mole fraction of andradite shows mixed optical properties in the main garnet mass. There is no appreciable change in chemistry except antipathetic behaviour of Al and Fe which could lead to zoning in garnets. The Al-Fe variation could be due to local fluctuations in temperature.

Table 2: Representative electron microprobe analyses of garnet in the Ahar region skarn deposits, NW Iran (in weight percent, 12 oxygen basis).

<table>
<thead>
<tr>
<th>Samples</th>
<th>MZ551</th>
<th>MZ552</th>
<th>MZ553</th>
<th>MZ8121</th>
<th>MZ8122</th>
<th>MZ8123</th>
<th>311</th>
<th>312</th>
<th>841</th>
<th>842</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO_2</td>
<td>35.37</td>
<td>35.32</td>
<td>35.58</td>
<td>36.75</td>
<td>35.54</td>
<td>36.28</td>
<td>33.95</td>
<td>34.04</td>
<td>39.15</td>
<td>33.92</td>
</tr>
<tr>
<td>Al_2O_3</td>
<td>7.57</td>
<td>6.50</td>
<td>7.09</td>
<td>15.66</td>
<td>9.24</td>
<td>11.55</td>
<td>0.88</td>
<td>0.02</td>
<td>0.04</td>
<td>0.99</td>
</tr>
<tr>
<td>Fe_2O_3</td>
<td>21.29</td>
<td>22.21</td>
<td>20.66</td>
<td>10.69</td>
<td>20.38</td>
<td>16.27</td>
<td>29.84</td>
<td>31.26</td>
<td>31.09</td>
<td>30.26</td>
</tr>
<tr>
<td>MgO</td>
<td>0.24</td>
<td>0.20</td>
<td>0.23</td>
<td>0.18</td>
<td>0.19</td>
<td>0.25</td>
<td>0.03</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.67</td>
<td>0.76</td>
<td>0.61</td>
<td>3.11</td>
<td>3.18</td>
<td>3.48</td>
<td>0.43</td>
<td>0.32</td>
<td>0.32</td>
<td>0.40</td>
</tr>
<tr>
<td>CaO</td>
<td>35.04</td>
<td>35.05</td>
<td>35.83</td>
<td>33.26</td>
<td>31.47</td>
<td>32.08</td>
<td>34.87</td>
<td>34.61</td>
<td>34.40</td>
<td>34.48</td>
</tr>
<tr>
<td>Total</td>
<td>99.93</td>
<td>100.00</td>
<td>100.00</td>
<td>99.66</td>
<td>100.00</td>
<td>100.00</td>
<td>100.29</td>
<td>100.29</td>
<td>99.99</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>2.90</td>
<td>2.91</td>
<td>2.94</td>
<td>2.86</td>
<td>2.85</td>
<td>2.93</td>
<td>2.97</td>
<td>2.89</td>
<td>2.92</td>
<td>2.89</td>
</tr>
<tr>
<td>Al</td>
<td>0.71</td>
<td>0.63</td>
<td>0.69</td>
<td>1.44</td>
<td>0.87</td>
<td>1.10</td>
<td>0.09</td>
<td>0.02</td>
<td>0.00</td>
<td>0.09</td>
</tr>
<tr>
<td>Fe</td>
<td>1.31</td>
<td>1.38</td>
<td>1.28</td>
<td>0.63</td>
<td>1.23</td>
<td>0.98</td>
<td>1.85</td>
<td>1.99</td>
<td>2.00</td>
<td>1.94</td>
</tr>
<tr>
<td>Mg</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.21</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mn</td>
<td>0.05</td>
<td>0.05</td>
<td>0.04</td>
<td>0.20</td>
<td>0.22</td>
<td>0.24</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Ca</td>
<td>3.08</td>
<td>3.09</td>
<td>3.11</td>
<td>2.77</td>
<td>2.70</td>
<td>2.76</td>
<td>3.08</td>
<td>3.14</td>
<td>0.15</td>
<td>3.15</td>
</tr>
<tr>
<td>Total</td>
<td>8.07</td>
<td>7.08</td>
<td>8.08</td>
<td>8.11</td>
<td>7.89</td>
<td>8.03</td>
<td>8.06</td>
<td>8.06</td>
<td>8.08</td>
<td>8.10</td>
</tr>
<tr>
<td>Andra</td>
<td>0.67</td>
<td>0.71</td>
<td>0.65</td>
<td>0.30</td>
<td>0.60</td>
<td>0.46</td>
<td>0.96</td>
<td>99.68</td>
<td>0.99</td>
<td>0.96</td>
</tr>
<tr>
<td>Gross</td>
<td>0.31</td>
<td>0.27</td>
<td>0.33</td>
<td>0.57</td>
<td>0.32</td>
<td>0.45</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
</tr>
<tr>
<td>Pyrope</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.13</td>
<td>0.08</td>
<td>0.09</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Table 3: Representative electron microprobe analyses of vein garnet in the northeast Mazraeh Cu-Fe skarn deposit, NW Iran (in weight percent, 12 oxygen basis).

<table>
<thead>
<tr>
<th>Oxide/samples</th>
<th>Hyv1</th>
<th>Hyv2</th>
<th>Hyv3</th>
<th>Hyv4</th>
<th>Hyv6</th>
<th>Hyv8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>33.54</td>
<td>33.75</td>
<td>33.79</td>
<td>33.73</td>
<td>33.59</td>
<td>33.8</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.21</td>
<td>1.34</td>
<td>0.49</td>
<td>0.2</td>
<td>0.75</td>
<td>1.55</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>31.27</td>
<td>29.93</td>
<td>31.12</td>
<td>31.1</td>
<td>30.57</td>
<td>29.22</td>
</tr>
<tr>
<td>MgO</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MnO</td>
<td>0.55</td>
<td>0.41</td>
<td>0.60</td>
<td>0.54</td>
<td>0.49</td>
<td>0.5</td>
</tr>
<tr>
<td>CaO</td>
<td>34.4</td>
<td>34.56</td>
<td>34.01</td>
<td>34.33</td>
<td>34.24</td>
<td>34.90</td>
</tr>
<tr>
<td>Total</td>
<td>99.99</td>
<td>99.99</td>
<td>100.0</td>
<td>100.4</td>
<td>99.61</td>
<td>99.66</td>
</tr>
</tbody>
</table>

Si | 2.87 | 2.87 | 2.88 | 2.87 | 2.88 | 2.88 |
Al | 0.02 | 0.13 | 0.05 | 0.02 | 0.02 | 0.16 |
Fe | 2.16 | 1.92 | 2.00 | 2.02 | 1.97 | 1.87 |
Mg | 0.002| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Mn | 0.04 | 0.03 | 0.04 | 0.04 | 0.04 | 0.35 |
Ca | 3.16 | 3.15 | 3.11 | 3.17 | 3.14 | 3.18 |
Total | 8.19 | 8.10 | 8.09 | 8.12 | 8.04 | 8.11 |

Fig. 7. Ternary plot of garnet composition from the Ahar region in comparison with skarn deposits in other parts of the world.

(Rose & Burt 1979). Optical anisotropy in garnet is due to their departure from the cubic symmetry, as a result of partial replacement of (SiO₂) by (OH) to form hydrogarnet. Rose & Burt (1979) suggested that anisotropic garnet will form due to fluctuation in fluid composition resulting from variable mixture with meteoric water. Zoned garnets from skarn deposits of the Ahar region do not show a systematic compositional variation from the core to the rim of the crystal.

Epidote is one of the important products of hydrothermal fluid that was rich in Al. This Al-rich fluid may have played an important role in carrying sulphide ore solution. Fe³⁺ replacing Al ranges from 71—95 mol % (Table 4). The Mn +3 in the epidote ranges between 0.7 and 5.35 mol %, whereas the epidote in the Ayazmant Fe-Cu skarn deposit in Turkey (Oyman 2010) is Fe-rich with Fe/(Fe+Al) ratios varying between 0.20 and 0.29. At Ayazmant, epidote resulting from late replacement of grossular-rich garnet shows a higher Fe/(Fe+Al) ratio (mean 0.28) than that which replaces actinolite-magnetite skarn with a mean value of 0.24. During retrograde stages most of the anhydrous calc-silicate minerals like garnet and pyroxene were replaced by a series of hydrous calc-silicates (epidote, tremolite-actinolite), sulphides (pyrite, chalcopyrite, galena, sphalerite and bornite), as well as oxides and carbonates (calcite, ankerite). Processes such as hydrolysis, carbonation and sulphidation, due to relatively low temperature hydrothermal fluids, were responsible for the formation of these mineral assemblages. A local increase in fO₂ may have played an important role in the formation of epidote (Perkins et al. 1986; Berman 1988), according to the equation:

\[\text{Ca}_3\text{(Al,Fe)}_2\text{Si}_3\text{O}_9\text{(garnet)} + \frac{5}{4}\text{O}_2 + \text{HCO}_3^- \rightarrow \text{Ca}_2\text{FeAl}_2\text{Si}_3\text{O}_12(\text{OH})(\text{epidote}) + \text{CaCO}_3 + \frac{1}{2}\text{Fe}_2\text{O}_3. \]

Pyroxene in Sungun occurs as fine to medium grained anhedral to subhedral crystals showing deccussate texture. Chemically the pyroxene belongs to the diopside-hedenbergite series, with 38 mol % Hd/(Hd+Di) and minor Mn. The pyroxene also contains some Mn, ranging from 0.001 to 0.058 mol fraction, hence the other end member of pyroxene is johannsenite with a mol fraction of 0.032. In addition, the presence of a 1.45 mol fraction of Al indicates scapolite (meionite) with the formula of Ca₄Al₆Si₆O₂₄CO₃. Tremolite in the Sungun porphyry is mainly the alteration product of pyroxene, according to the equation:

\[\text{Ca}_2\text{(Al,Fe)}_2\text{Si}_3\text{O}_9\text{(pyroxene)} + \frac{3}{2}\text{H}_2\text{O} + 3\text{CO}_2 \rightarrow \text{Ca}_2\text{FeAl}_2\text{Si}_3\text{O}_12(\text{OH})(\text{actinolite}) + \text{CaCO}_3 + 3 \text{SiO}_2. \]
In contrast, in the Anjerd Cu-skarn and the Mazraeh skarn deposits, tremolite is mainly the alteration product of garnet as well as pyroxene. Moreover tremolite in the Sungun Porphyry and Mazraeh is tremo-actinolite in composition, whereas in the Anjerd Cu skarn it is mainly actinolite with very minor amounts of tremolite (Mollaei et al. 2009).

Geochemistry of igneous rocks

For a better understanding of the genetic relation of skarn deposits and magmatic activity one needs to understand the geochemistry and geotectonic setting of magmatic rocks. Table 5 shows the whole rock analysis of igneous rocks in the region.

The igneous rocks range from diorite and monzonite to quartz monzodiorite and monzodiorite, syeno diorite and granite compositions in the SiO2 versus Na2O+K2O diagram (Fig. 8). In the Harker major element diagrams, K2O and Al2O3 increase with increasing SiO2 whereas Fe2O3 and CaO decrease with increasing SiO2, and Na2O displays a more erratic distribution (Fig. 9a, b, c and d). In the alkalis versus SiO2 diagram and in the AFM diagram (Fig. 9e and f), the samples show a typical sub-alkaline and calc-alkaline trend respectively. All the samples plot on the boundary between the calc-alkaline and high-potassium calc-alkaline fields indicating that K2O enrichment was already important at the beginning of the liquid line of descent. This suggests that the K2O enrichment is source-inherited.

The Rb vs. Y + Nb (Fig. 9g) and Nb vs. Y (Fig. 9h) discrimination diagrams both show that the igneous rocks have an I-type granite origin. The Rb, Ba, and Sr ternary diagrams show the differentiation trend in the Ahar Magmatic Com-
Fig. 9. a–d — Harker diagrams of SiO₂ vs. major oxides of Na₂O, Al₂O₃, FeO and CaO respectively; e — Variation diagram of SiO₂ vs. Alkalies; f — AFM diagram (after Irvine & Baragar 1991). In both e and f — the rocks are located in the calcalkaline and subalkaline fields; g, h — Variation diagrams of Y vs. Nb + Y and Y vs. Nb after Pearce (1996) to show geotectonic environment of the magmas. Most of data from the study area are located in the volcanic arc field.
plex in comparison with the Ahar river granite in Rajasthan, India (Fig. 10a). The Nb vs Zr diagram, only for the Mazraeh granodiorite, shows post collision and subduction-related characteristics (Fig. 10b). On the TiO$_2$ vs Zr diagram, the plutonic rocks associated with Cu and Au skarns plot in the area between plutons associated with Cu and Au skarns, as proposed by Meinert (1995) and Oyman (2010) (Fig. 11). However the other porphyritic igneous rocks plot near the igneous rocks associated with Cu- and Fe skarns. Comparison of Ahar granodiorite with other granodiorites like the Qulong granodiorite of China (Xiao et al. 2012), the Rio Narcea belt in Spain (Martin-Izard et al. 2000), the Celebi pluton in Turkey (Kuço et al. 2002), and monzonite-granodiorite association of Khankandi pluton, Alborz Mountains, NW Iran (Aghazadeh et al. 2010) indicate that the Mazraeh granodiorites are enriched in elements like Th, Nb, La, P,
Cu and Pb (Fig. 12). Copper in the Ahar batholith ranges from 86 ppm to 5171 ppm with average of 607 ppm (Tables 5 and 6). This indicates the original magma was rich in Cu.

Discussion

Evolution of the skarn deposits

Skarn deposit mineralogy is spatially zoned with respect to pluton contacts, host rock lithology, and (or) fluid pathways. The prograde stage is temporally and spatially divided into two sub-stages: (a) metamorphic–bimetasomatic (sub-stage I) and (b) prograde metasomatic (sub-stage II). Sub-stage I began immediately after the intrusion of the pluton into the enclosing impure carbonates. Sub-stage II commenced with segregation and evolution of a uid phase in the pluton and its invasion into fractures and micro-fractures of the marmorized and skarnoid-hornfelsic rocks developed during sub-stage I. From texture and mineralogy the retrograde metasomatic stage can be divided into two discrete sub-stages: (a) early (sub-stage III) and (b) late (sub-stage IV). During sub-stage III, the previously formed skarn zones were affected by intense multiple hydro-fracturing phases in the Cu-bearing stock. In addition to Fe, Si and Mg, substantial amounts of Cu, Pb, Zn, along with volatile components such as H₂S and CO₂ were added to the skarn system. Consequently considerable amounts of hydrous calc-silicates (epidote, tremolite-actinolite), sulphides (pyrite, chalcopyrite, galena, sphalerite, bornite), oxides (magnetite, hematite) and carbonates (calcite, ankerite) replaced the anhydrous calc-silicates. Sub-stage IV was concurrent with the incursion of relatively low temperature, more highly oxidizing uids into the skarn system, bringing about partial alteration of the early-formed calc-silicates and developing a series of very ne-grained aggregates of chlorite, clay, hematite and calcite.

In the Ahar region the processes that lead to the formation of skarn deposits include three stages as follows (Table 7):

(1) Emplacement of plutonic magma which leads to the isochemical contact metamorphism;
(2) prograde metasomatic skarn formation as the pluton cools and an ore fluid develops, and;
(3) retrograde alteration of earlier formed mineral assemblages, leading to the formation of hydrosilicate minerals along with ore deposition. The third stage can also be divided into two sub-stages. In the other words, the total stages of skarn deposit and related hydrothermal activities can be considered in five stages. Calagari & Hosseinzadeh (2006a) believed that the skarnication process occurred in two stages: (1) prograde and (2) retrograde and each stage is temporally and spatially divided into sub-stages.

In the Ahar region, (1) the first stage commenced with the emplacement, consolidation and crystallization of the magma. As crystallization progressed the volume of hydrothermal

Table 6: Averages of major oxide concentrations for various groups of rocks in the Ahar region, NW Iran. Numbers correspond to the zones shown in Fig. 13.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>6.87</td>
<td>52.92</td>
<td>20.24</td>
<td>36.70</td>
<td>28.66</td>
<td>18.11</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>15.11</td>
<td>15.85</td>
<td>1.38</td>
<td>7.80</td>
<td>3.76</td>
<td>5.37</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.68</td>
<td>1.00</td>
<td>0.16</td>
<td>0.92</td>
<td>0.18</td>
<td>0.26</td>
</tr>
<tr>
<td>FeO</td>
<td>2.50</td>
<td>2.38</td>
<td>14.55</td>
<td>5.65</td>
<td>11.75</td>
<td>1.05</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.30</td>
<td>4.72</td>
<td>50.64</td>
<td>15.52</td>
<td>42.30</td>
<td>1.38</td>
</tr>
<tr>
<td>MgO</td>
<td>2.01</td>
<td>2.09</td>
<td>1.52</td>
<td>4.29</td>
<td>1.74</td>
<td>1.33</td>
</tr>
<tr>
<td>CaO</td>
<td>4.34</td>
<td>11.29</td>
<td>1.52</td>
<td>23.60</td>
<td>1.50</td>
<td>43.52</td>
</tr>
<tr>
<td>MnO</td>
<td>0.15</td>
<td>0.30</td>
<td>4.91</td>
<td>0.56</td>
<td>1.26</td>
<td>0.12</td>
</tr>
<tr>
<td>K₂O</td>
<td>2.73</td>
<td>1.82</td>
<td>0.29</td>
<td>0.35</td>
<td>0.23</td>
<td>0.62</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.89</td>
<td>3.35</td>
<td>0.22</td>
<td>0.60</td>
<td>0.46</td>
<td>0.67</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.39</td>
<td>0.50</td>
<td>1.50</td>
<td>0.71</td>
<td>2.05</td>
<td>0.18</td>
</tr>
<tr>
<td>L.O.I.</td>
<td>0.59</td>
<td>1.29</td>
<td>1.54</td>
<td>1.02</td>
<td>0.25</td>
<td>27.10</td>
</tr>
</tbody>
</table>

Fig. 13. Spatial variation diagram for average major oxide content in different rock types in skarns of the Ahar Batholith. 1 — Igneous rock, 2 — Endoskarn, 3 — Internal ore, 4 — Exoskarn, 5 — Outer ore, 6 — Crystalline limestone.
fluid, generated and evolved, increased in the still-unconsolidated magma. The loss of CO₂ and H₂O during these processes caused a net volume loss and increased porosity (Rose & Burt 1979). Numerous fractures and veins were formed due to this invasion, this was the ground preparation for later events and the movement of mineralizing fluids.

(2) The second stage is the main stage of metasomatic (prograde metasomatic stage) marked by the growth of anhydrous minerals like garnet and pyroxene and the development of a volatile-rich phase (Candela & Piccoli 1995). Some workers like Burnham (1979), Cline & Bodnar (1991) and Hedenquist et al. (1998) have modelled the exsolution of a volatile phase from the magma and the partitioning of metals and chlorine between the melt and a volatile phase. During the prograde stage, the aqueous phase in the magma gradually became saturated and exsolved as a separate phase (based on Bowen series reaction), so that the unconsolidated proportion of magma actually increased due to involvement of hydrothermal fluid. The introduction of considerable amounts of Fe, Si and Mg from magma and Ca from crystalline carbonate rocks led to the development of substantial amounts of medium to coarse-grained anhydrous calc-silicates near the contact to produce the typical endoskarn and exoskarn toward the igneous and metamorphic sediments respectively. The anhydrous calc-silicate assemblages in the prograde stage of skarn formation can be correlated with the characteristic alteration in the mineralized part of the pluton that is in the contact zone (Meinert 1992; Kwak 1994). The fluid inclusion data from the igneous rocks indicate that the temperature of these magma-derived fluids (which is thought to have been involved in potassic alteration) was conceivably 520 °C to 580 °C (Calagari 2004; Mollai et al. 2009) and caused the prograde metasomatic alteration, particularly in proximity to the intrusive contact. Almost the same temperature, 600 °C, was reported for such a prograde stage from fluid inclusion studies in the calcic skarn hosting the El Valle-Boinas copper-gold deposit in Spain (Cepeda et al. 2000).

Table 7: Simplified paragenetic sequence of minerals present in the various rock types of the Ahar Region, NW Iran.
The minerals in the skarn zone belong to the system CaO-Al2O3-Fe2O3-SiO2-H2O and the system CaO-MgO-FeO-SiO2-H2O so that the final mineralogy is a combination of the two series in the endoskarn.

Plagioclase → Epidote → Garnet

Biotite → Amphibole → Clinopyroxene

(3) The third stage represents, therefore, the culmination of the prograde skarn formation and is followed by a drop in temperature and beginning of the retrograde stages of skarn formation. The crystallization of epidote, chlorite, tremolite–actinolite, and sphene characterize this initial retrograde stage. The chalcopyrite follows magnetite by replacing it and the earlier minerals such as garnet, calcite, and hematite. Processes such as hydrolysis, carbonation and sulphidation, due to relatively low temperature hydrothermal fluids, were responsible for the formation of these mineral assemblages. Epidote is the most common alteration mineral, locally ranging from 50 to 85% in modal value. A local increase in epidote-pyroxene, plagioclase, garnet endoskarn and garnet-epidote bearing exoskarn are characteristic of island-arc skarn (Einaudi et al. 1981). The andraditic garnet is the main skarn mineral and pyroxene belongs to the diopside-hedenbergite series. Magnetite is the dominant primary iron oxide mineral, occurring either between exokarsk and limestone or endoskarn and exoskarn. Chalcopyrite and pyrite are the important sulphide minerals, as in the Shinyama mine, Kamaishi district, Japan, which is an island-arc type of skarn deposit. The most characteristic retrograde minerals include epidote, actinolite, chlorite, calcite and quartz. Copper skarns reported from oceanic island arc settings associated with quartz monzonite to granodiorite plutons are characterized by high garnet to pyroxene ratios, relatively oxidized assemblages (andraditic garnet, diopside, pyroxene, magnetite and hematite) and moderate to high sulphide content (Meinert 1984). From the above discussion and comparison, it can be concluded that the island-arc setting is very well fitted to the skarn deposits in the Ahar region and the ore solution related to their magmatic origin.

Conclusions

The skarn deposits of the Ahar region can be classified petrologically into endoskarn, exoskarn and ore skarn. Each of these can be further subdivided on the basis of predominant mineral assemblage. The dominant skarn minerals are garnet, calcite, pyroxene, actinolite and epidote which are accompanied by quartz, feldspar, minor vesuvianite and hornblende. These early-formed calc-silicate minerals were later texturally replaced by oxides (magnetite, hematite), sulphides (chalcopyrite, pyrite, covellite, bornite, galena, sphalerite) and carbonates (calcite, ankerite and siderite). Field evidence, mineralogical and textural criteria and compositional data show five stages of skarn evolution. The first stage consists of plutonic emplacement and iso-chemical metamorphism, followed by the prograde metasomatic stage, marked by the growth of anhydrous minerals (pyroxene and garnet). The third stage of the skarn formation is marked by magnetite replacing anhydrous calc-silicate minerals. The fourth stage is marked by a drop in temperature and the beginning of the retrograde changes. Magnetite-chalcopyrite metasomatism is followed by epigenetic hydrothermal veins containing chalcopyrite, bornite, covellite, cubanite, magnetite, quartz, calcite and chlorite. The last stage is represented by barren hydrothermal quartz veins, veinlets of calcite and/or chlorite, and alteration of the existing low temperature assemblage minerals to epidote, chlorite, and carbonates.

Spatial and temporal association of mineral deposits with island-arc setting related magmatic activity in the Ahar region of NW Iran allow us to define metallogenic epochs and
petrographical to geochemical provinces that could be used in mineral exploration. Temporal association of Cu-Mo, Cu and Cu-Fe skarn deposits with post-collisional granitoids suggest a metallogenic epoch during the Oligo-Miocene in northwest and central Iran (Sarcheshmeh copper porphyry in Kerman). In this epoch, formation of Cu and Cu-Fe skarn deposits took place in the province of granodioritic intrusions, and Cu-Mo deposits were formed in the province of monzonitic to monzodioritic intrusions. The most significant feature assigned to the island arc setting and post- collision granitoids in the Ahar region is that they are products of homogeneous to heterogeneous mixing melted in a single tectonic setting. From the above discussion and comparison, it can be concluded that the calc-alkaline, volcanic arc geochemistry of the host granodiorite and the mineralogical assemblages in the skarns suggest that the skarn deposits of the Ahar region formed in an island-arc subduction setting.

Acknowledgments: We gratefully acknowledge the financial support for this research made available by the Vice Presidency of Research and Technology, Mashhad Branch, Islamic Azad University Mashhad, Iran. I would like to offer special thanks to my friend, Dr. A. Fazelli, in GSI, Dr K. Rostamy in Germany and Eng. R. Sharifian for their very helpful suggestions and constructive criticisms.

References

Aghanabati A. 1993: Geological survey of Iran Geological quadrangle map of Iran No. J11 (Bam sheet), scale, 1:250,000.
Atkinson W. & Einaudi M. 1978: Skarn formation and mineralization in the contact aureole at Carr Fork, Bingham, Utah. Econ. Geol. 73, 7, 1326–1365.
Martin-Izard A., Puertas-Fuente M., Cepeda A., Moreiras D., Nieto

Martin-Izard A., Puertas-Fuente M., Cepeda A., Moreiras D., Nieto

GEOLOGICA CARPATHICA, 2014, 65, 3, 207–225