Scholarly article on topic 'Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review'

Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review Academic research paper on "Chemical sciences"

0
0
Share paper
Academic journal
3 Biotech
OECD Field of science
Keywords
{""}

Academic research paper on topic "Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review"

3 Biotech

DOI 10.1007/s13205-014-0206-0

REVIEW ARTICLE

Phosphate-solubilizing bacteria-assisted phytoremediation of metalliferous soils: a review

Munees Ahemad

Received: 9 December 2013/Accepted: 24 February 2014

© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract Heavy metal pollution of soils is of great concern. The presence of the toxic metal species above critical concentration not only harmfully affects human health but also the environment. Among existing strategies to remediate metal contaminates in soils, phytoremediation approach using metal accumulating plants is much convincing in terms of metal removal efficiency, but it has many limitations because of slow plant growth and decreased biomass owing to metal-induced stress. In addition, constrain of metal bioavailability in soils is the prime factor to restrict its applicability. Phytoremediation of metals in association with phosphate-solubilizing bacteria (PSB) considerably overcomes the practical drawbacks imposed by metal stress on plants. This review is an effort to describe mechanism of PSB in supporting and intensifying phytoremediation of heavy metals in soils and to address the developmental status of the current trend in application of PSB in this context.

Keywords Bioremediation • Heavy metals • Hyperaccumulator plants • Phosphate-solubilizing bacteria • Phytoremediation • Rhizobacteria

Introduction

Soil is one of the most important natural resource on which lives of all plants, animals and microorganisms directly or indirectly dependent. In soils, different microorganisms

M. Ahemad (&)

Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, UP, India e-mail: muneesmicro@rediffmail.com

Published online: 12 March 2014

thrive on abundantly present nutrients therein and through various interactions play a pivotal role in cycling of nutrients and pedogenesis (Ahemad and Khan 2013). Alteration or disturbance in soil ecosystem by added pollutants leads to substantial changes in functional activities of these important soil microorganisms (Swain and Ab-hijita 2013). Among pollutants, enormous amounts of toxic heavy metals such as chromium, cadmium, copper, zinc, mercury and lead contaminate soils through various geo-genic, anthropogenic and technogenic activities (Ahemad 2012; Liu et al. 2013; Waterlot et al. 2013; Chodak et al. 2013). Due to non-biodegradable nature, metals in soils persist longer and pose a risk to human health through food chain because of their carcinogenicity, mutagenicity and teratogenicity (Ahemad and Malik 2011; Ali et al. 2013; Ahemad and Kibret 2013a). In addition, metals exceeding threshold limit affect microbial diversity and soil fertility (Huang et al. 2009). Thus, remediation of such metal-stressed soils is of paramount significance as they are rendered inappropriate for agricultural application.

Many physicochemical technologies are already in practice to clean up the metal-contaminated soils (Hashim et al. 2011). However, these conventional technologies are generally too costly to be applied to decontaminate the metal-polluted sites. Moreover, they generally adversely affect the texture and organic components, which are important to sustain the fertility of soils (Rajkumar et al. 2010). In view of sustainability issues and environmental ethics, bioremediation, the exploitation of biological processes for the cleanup of contaminated sites, is a promising, benign and ecologically sound alternative to chemical technologies (Hashim et al. 2011; Gillespie and Philp 2013). Among different bioremediation approaches, phy-toremediation (utilizing metal accumulating plants to detoxify and extract contaminants in polluted soils) is

^j^dlxLc dLLcJI cujzlo 0

^GT^ig^ H Springer

gaining wide acceptance due to being cheap and environmentally safe but the major drawback of this technique is that it is time-consuming and high levels of metals decease the remediating efficiency of plants (Ali et al. 2013). Interestingly, interactions between plant and metal resistant bacteria have shown better remediation of heavy metals, and this synergism not only expedites the remediation process by ameliorating phytostabilization (reduction in metal toxicity through metal immobilization) and phy-toextraction (metal accumulation as a result of metal mobilization) of metal species but also accelerate the plant growth and development (Khan et al. 2009).

Since last decades, several phosphate-solubilizing bacteria (PSB) exhibiting both heavy metal detoxifying traits and plant growth promoting activities have been explored and have been implicated in phytoremediation of metalliferous soils (He et al. 2010; Misra et al. 2012; Oves et al. 2013; Ahemad and Kibret 2013b). This review is an effort to emphasize how the beneficial association between plants and PSB can be used to remediate the metal-stressed soils efficiently. In this review, mechanism of PSB mediation in supporting and intensifying phytoremediation process is discussed in detail.

Phytoremediation: an overview

physicochemical processes, phytormediation is an eco-friendly and comprehensive strategy having no side effects on soil texture and health (Suresh and Ravishankar 2004).

In phytoextraction, metals are accumulated in plant biomass from moderately contaminated soils. On the other hand, phytostabilization is a long-term, in situ approach applicable in polymetallic soils wherein concentration and the area of metal contaminant are so extensive that phy-toextraction cannot work; therefore, metals are not allowed to enter plants but are captured in situ through biosorption, precipitation or reducing toxicity (de-Bashan et al. 2012). Plants selected for phytostabilization must be metal-tolerant (metallophytes) and should not accumulate metals into root tissues. Despite having mechanisms to evade metal translocation in shoot tissues, considerable amount of metals may be found in the shoot parts. Metal accumulation in plants can measured in terms of (1) bioconcentration factor (BF)/accumulation factor (AF) which is the ratio of metal concentration in the shoot tissue to the soils and (2) translocation factor (TF) which is the ratio of metals in shoot to those in root. For better phytostabilization, these values should preferably be ^ 1 while the values must be in addition to higher plant biomass for an ideal phy-toextracting plants (Peuke and Rennenberg 2005; Mendez and Maier 2008).

Currently, several physicochemical and biological techniques are in practice to remediate the metal-contaminated soils. Of them, remediation processes based upon the physicochemical parameters are very costly and also affect the soil properties, biodiversity and fertility. Different remediation technologies have been compared in Table 1 in terms of cost. It is obvious from the enlisted remediation approaches that phytoextraction (phytoremediation type) is one of the most cost effective method to remediate the metal-polluted soils (Padmavathiamma and Li 2007). Phytoremediation occurs only at marginal cost, which is due to harvesting and field management, e.g., weed control. In addition, the resulting biomass of phytoremediating plants can be used for heat and energy production in specialized facilities (Peuke and Rennenberg 2005). Unlike

Table 1 Cost of different remediation technologies

Process Cost Other factors

(US$/ton)

Vitrification 75-425 Long-term monitoring

Land filling 100-500 Transport/excavation/monitoring

Chemical treatment 100-500 Recycling of contaminants

Electrokinetics 20-200 Monitoring

Phytoextraction 5-40 Disposal of phytomass

Source: Glass (1999)

¿1 Snrinopr

KAcsTö^öUiq rngiiU ^ springer

Phosphate-solubilizing bacteria

After nitrogen, phosphorus (P) is the second essential macronutrient for plant growth and development. Generally, substantial amount of phosphorus (P) occurs in soil ranging from 400 to 1,200 mg/kg of soil, either in mineral forms, e.g., apatite, hydroxyapatite and oxyapatite, or organic forms such as, inositol phosphate (soil phytate), phosphomonoesters, phosphodiesters and phosphotriesters (Ahemad et al. 2009). However, the concentration of soluble forms of P in soil is usually * 1 mg/kg or less (Goldstein 1994). In addition, it has a very limited bio-availability to growing plants due to high reactivity of phosphate ions in soils. To circumvent this deficiency, phosphatic fertilizers are applied in soils. But most of the applied P in the forms of fertilizers is precipitated; consequently, a very small fraction is available for absorption by plants. As an eco-friendly and economical alternative to provide substantial amount of soluble P to plants for growth promotion is the exploitation of P solubilization and mineralization traits of PSB.

Additionally, PSB not only protect plants from phyto-pathogens through the production of antibiotics, HCN, phenazines and antifungal metabolites, etc. (Upadhayay and Srivastava 2012; Singh et al. 2013), but also promote plant growth through N2 fixation (He et al. 2010),

Fig. 1 Mechanisms of phosphate-solubilizing bacteria-mediated plant growth promotion. ROS reactive oxygen species, ACC 1-aminocyclopropane-1-carboxylate, NH3 ammonia, HCN hydrogen cyanate, IAA indole-3-acetic acid, P phosphate

Release of trace elements by solubilization of mineral salts

Regulation of root development and tissue growth, and act as signaling molecules

Antibiotics, antifungal metabolites, HCN, NH3

Siderophores

Acidification by Organic acids

Nitrogen fixation

Phosphate solubilizing Bacteria

Insoluble P

siderophore production (Ahemad and Khan 2012a, b), phytohormone secretion (Misra et al. 2012; Oves et al. 2013) and lowering ethylene levels (Jiang et al. 2008; Kumar et al. 2009) (Fig. 1).

Mechanisms of PSB-assisted metal phytoremediation

Although decontamination of metal-polluted soils using plants (phytoextraction/phytostabilization) has shown encouraging results, this approach has limitations in case of the polluted sites wherein metal concentration is extremely elevated (Gamalero and Glick 2012). Under high metal stress, their physiological activities are hampered; growth and development are severely impeded; and resistance mechanisms are weakened, and in turn, they become prone to phyto-pathogen attacks (Ma et al. 2011c). Further, their metal phytoremediating efficiency is depressingly affected, and the process of metal decontamination is proportionally impeded depending upon several factors (Martin and Ruby 2004). Intended to overcome the noxious level of metals that significantly decline the plant growth, PSB with multiple plant growth promoting traits (Table 2; Fig. 1) and concurrent metal detoxifying potentials (Fig. 2) may increase the phytoremediation competence of plants by promoting their growth and health even under hazardous levels of different metals. As adjuncts with plants, PSB remediate metal-contaminated soils largely through facilitating either phytostabilization (decreasing metal toxicity

by transforming metal species into immobile forms) or phytoextraction (metal mobilization and accumulation in plant tissues) (Fig. 3). Various plant growth promoting traits of PSB, such as organic acid production, secretion of siderophores, IAA production and ACC deaminase activity, contribute in enhancing the phytoremediation capability of plants.

Organic acids

In most of the metalliferous soils, metals are strongly adhered to soil particles; therefore, they are not easily available for uptake by phytoextracting plants (Gamalero and Glick 2012). In this context, PSB are very promising agents since they solubilize the insoluble and biologically unavailable metals such as Ni (Becerra-Castro et al. 2011), Cu (Li and Ramakrishna 2011) and Zn (He et al. 2013) by secreting low molecular weight organic acids; thus, they facilitate metal bioavailability for plant uptake (Becerra-Castro et al. 2011). A number of organic acids such as lactic, citric, 2-ketogluconic, malic, glycolic, oxalic, ma-lonic, tartaric, valeric, piscidic, succinic and formic have been identified, which have chelating properties (Panhwar et al. 2013). Moreover, metal bioavailability in metal-stressed soils can be further increased by inoculating bio-surfactant producing PSB as the bacterial biosurfactants aid in metal release from soil particles (Gamalero and Glick 2012; Singh and Cameotra 2013).

¿1 Snrinopr

KACSToaüüJlg ^WJ ^ springer

Table 2 Plant growth promoting substances released by phosphate-solubilizing bacteria

PGPR Plant growth promoting traits References

Pseudomonas aeruginosa IAA, siderophores Oves et al.

strain OSG41 (2013)

Pseudomonas sp. IAA, HCN Singh et al.

(2013)

Acinetobacter IAA Misra et al.

haemolyticus RP19 (2012)

Pseudomonas putida IAA, siderophores, Ahemad and

HCN, ammonia Khan (2011c,

2012b, c)

Pseudomonas fluorescens IAA, siderophores, Upadhayay and

strain Psd HCN, antibiotics, Srivastava

biocontrol activity (2012)

Bacillus thuringiensis IAA Sandip et al.

(2011)

Pseudomonas aeruginosa IAA, siderophores, Ahemad and

HCN, ammonia Khan (2010c,

2011a, e,2012d)

Pseudomonas sp. TLC IAA, siderophore Li and

6-6.5-4 Ramakrishna

(2011)

Bacillus sp. IAA, HCN Karuppiah and

Rajaram

(2011)

Klebsiella sp. IAA, siderophores, Ahemad and

HCN, ammonia Khan (2011b,

d, 2012a)

Enterobacter asburiae IAA, siderophores, Ahemad and

HCN, ammonia Khan (2010a,

Bacillus species PSB10 IAA, siderophores, Wani and Khan

HCN, ammonia (2010)

Arthrobacter sp. MT16, ACC deaminase, He et al. (2010)

Microbacterium sp. IAA, siderophore

JYC17, Pseudomonas

chlororaphis SZY6,

Azotobacter vinelandii

GZC24, Microbacterium

lactium YJ7

Pseudomonas sp. IAA, siderophore, Tank and Saraf

HCN, biocontrol (2009)

potentials

Enterobacter aerogenes ACC deaminase, Kumar et al.

NBRI K24, Rahnella IAA, siderophore (2009)

aquatilis NBRI K3

Enterobacter sp. ACC deaminase, Kumar et al.

IAA, siderophore (2008)

Burkholderia ACC deaminase, Jiang et al.

IAA, siderophore (2008)

Pseudomonas aeruginosa ACC deaminase, Ganesan (2008)

IAA, siderophore

ACC 1-aminocyclopropane-1-carboxylate, HCN hydrogen cyanate, IAA indole-3-acetic acid

1 ЧПП'пстрг

KACSTöAöJlq ^»lalJ ^ Sprmger

Siderophores

Generally, iron occurs mainly as Fe3+ and forms insoluble hydroxides and oxyhydroxides, thus is not easily available to both plants and microorganisms (Ahemad and Kibret 2013b). Under iron-limiting conditions to acquire iron, bacteria secret low molecular weight siderophores, which are iron chelators with exceptionally strong affinity for ferric iron (Fe3?) (Schalk et al. ). Despite their preferential affinity for Fe3?, they can also chelate several other metals such as, magnesium, manganese, chromium (III), gallium (III), cadmium, zinc, copper, nickel, arsenic and lead, and radionuclides, including plutonium (IV) with variable affinities (Nair et al. 2007; Rajkumar et al. 2010; Schalk et al. 2011). Supply of iron to growing plants under heavy metal pollution becomes more important as bacterial siderophores help to minimize the stress imposed by metal contaminants (Gamalero and Glick 2012). For instance, siderophore overproducing mutant NBRI K28 SD1 of phosphate-solubilizing bacterial strain Enterobacter sp. NBRI K28 not only increased plant biomass but also enhanced phytoextraction of Ni, Zn and Cr by Brassica juncea (Indian mustard) (Kumar et al. 2008).

Indole acetic acid

Phytohormone, indole-3-acetic acid (IAA) whose biosynthesis requires L-tryptophan as a precursor, is the most important auxin, which regulates several morphological and physiological functions in plants (Glick 2012). Although it has been implicated in stimulation of root growth, alleviation of salt stress, plant-pathogen interactions, legume-rhizobia interactions and eliciting induced systemic resistance against various diseases, it primarily is involved in stimulating the proliferation of lateral roots in plants, thereby root surface area is increased and they absorb more water and soil minerals (Egamberdieva 2009; Lugtenberg and Kamilova 2009, Ahemad and Kibret 2013b). Many phosphate-solubilizing bacterial genera (He et al. 2010; Ahemad and Khan 2011a, 2012b; Misra et al. 2012; Oves et al. 2013) in soils have been reported to secret IAA that is absorbed by plant roots to increase the endogenous pool of plant IAA (Glick et al. 2007). However, effects of variable IAA concentrations vary among different plant species. Moreover, optimum concentration of bacterial IAA has stimulatory effect, while high concentration (supra-optimal) of those is inhibitory to root growth (Glick 2012).

Generally, bacterial IAA facilitates adaptation of host plants in metal-contaminated sites through triggering

Metal carbonate,

phosphate, hydroxide, sulfide

I Bioprecipitation

HCO3-, HPO4-, OH, HS

Fig. 2 Various bacterial interactions with heavy metals in metal-polluted soils: 1 precipitation/crystallization of metals occurs due to bacteria-mediated reactions or as a result of the production of specific metabolites. 2 Plasmid-DNA-encoded efflux transporters (e.g., ATP-ase pumps or chemiosmotic ion/proton pumps) expel the accumulated metals outside the cell. 3 Metals bind to the anionic functional groups (e.g., sulfhydryl, carboxyl, hydroxyl, sulfonate, amine and amide groups) of extracellular materials present on cell surfaces. 4 Organic acids secreted by bacteria solubilize the insoluble metal minerals. 5 Some bacteria utilize methylation as an alternative for metal resistance/detoxification mechanism, which involves the transfer of methyl groups to metals and metalloids. 6 Metals enter the bacterial cell by chromosomal DNA-encoded metal transporters either through

ATP hydrolysis or as a result of chemiosmotic gradient across the cytoplasmic membrane. 7 Bacterial cell also accumulate substantial concentration of metals by the synthesis of low molecular mass cysteine-rich metal-binding proteins, metallothioneins having high affinities for several metals. 8 Membrane-embedded metal reductases, generally encoded by chromosomal DNA, reduce metals in the presence of electron donors. 9 Siderophore secretion decreases metal bioavailability by binding metal ions having chemistry similar to iron. 10 Superoxide dismutase, catalase and glutathione are activated to combat oxidative stress produced by the reactive oxygen species (ROS), and DNA repair system is activated to repair the DNA damaged due to various metal interactions within cell

physiological changes in plant cell metabolism under metal stress so that the growing plants can withstand high concentrations of heavy metals (Glick 2010). However, Hao et al. (2012) determined that bacterial IAA had a larger impact on the growth of host plants under metal stress rather than bacterial metal resistance through transposon mutagenesis in phosphate-solubilizing Agrobacterium tumefaciens CCNWGS0286.

1-Aminocyclopropane-1-carboxylate (ACC) deaminase

Another phytohormone, ethylene, modulates many important physiological activities of growing plants including root growth and development. Under both biotic (e.g., phyto-pathogen attacks) and abiotic (e.g., heavy metals, drought, flooding and salinity) stresses, plant produces

ethylene up to the level that is inhibitory to root growth (Khalid et al. 2006; Arshad et al. 2007; Nadeem et al. 2007, 2009; Chen et al. 2013). Since phytoremediation approach to decontaminate the metal-spiked soils is largely reliant on the profuse growth of roots and the efficient uptake and mobilization of heavy metal ions via prolific root system to different plant parts, stress-induced ethylene at supraoptimal concentration leads to reduced root growth in turn, limiting the proficiency of metal remediating plants (Arshad et al. 2007; Gamalero and Glick 2012).

To counter this physiological crisis, an enzyme ACC deaminase (EC 4.1.99.4) produced by many soil microflora including PSB (Kumar et al. 2009; He et al. 2010), degrades ACC (an immediate precursor for ethylene in plants) into 2-oxobutanoate and ammonia hence decreases the ethylene biosynthesis in plant tissues (Saleem et al. 2007; Shaharoona et al. 2007; Zahir et al. 2009). Ammonia

¿1 Snrinopr

KAcsTiuiUi, ^wj ^ springer

Fig. 3 Schematic portrayal of the role of metal resistant phosphate-solubilizing bacteria in alleviation of heavy metal toxicity, phytoextraction and phytostabilization

released in this way is utilized by ACC deaminase-expressing organisms as nitrogen source for growth (Glick 2005). In addition, while attached with the plant roots, ACC deaminase-containing bacteria act as a sink for ACC ensuring that ethylene level may not increased to the point where root growth and development is impaired (Glick 1995). Thus, bacterial ACC deaminase-induced extensive root proliferation in metal remediating (hyperaccumulator) plants results into efficient phytoremediation processes in metal-polluted soils (Arshad et al. 2007). Several species of ACC deaminase-containing PSB have been isolated and successfully improved the plant growth under metal stress (Ganesan 2008; Jiang et al. 2008; Sun et al. 2009).

Exploiting PSB in phytoremediation of metal-stressed soils

In various studies, growth promoting effects of PSB are well established both in unpolluted and polluted soils when used as inoculants (Ma et al. 2011a, b; Oves et al. 2013). However, degree of their impact on different plants varies depending upon plant species, bacterial species, soil types and environmental factors. In metalliferous soils, several authors have studied phytoremediation using PSB as bio-inoculants to remove different heavy metals from soils. Worldwide, the research in this direction is currently being carried out considering various aspects to overcome hurdles which impede the efficient removal of metal

Snrinapr

KAcsToAoUiq rnqiiU ^ springer

contaminants. In Table 3, various phytoremediation studies have been listed to show effects of different PSB using different plant species and metals. Many insights can be drawn following analyses of these studies:

1. Most of the laboratory or green house studies have employed plants of Brassicaseae family in conjunction with PSB because plant species of this family (hyper-accumulator plants) have been reported to accumulate substantial amount of metals in their tissues.

2. Diverse species of PSB have been used in these metal phytoremediation studies. However, species like Pseudomonas aeruginosa, being an opportunistic human pathogen, poses a challenge to be released in the soil environment (Walker et al. 2004). Hence, ethical and juridical considerations are needed if they are to be used as inoculants in fields.

3. Among environmentally toxic metals, only few metals such as, Ni, Cu, Zn and Cr have been studied extensively while other toxicologically important metals, e.g., As, Cd, Hg and Pb are least considered. Therefore, phytoremediation studies concerning other metals would reveal new challenges, insights and problems leading to pave ways for further research in this course.

4. Both approaches of metal remediation, phytostabiliza-tion and phytoextraction have been implicated in these studies. As the plants growing in metal-stressed soils are weakened due to metal-induced physiological

Table 3 Phosphate-solubilizing bacteria (PSB ) mediated metal remediation and plant growth promotion

Heavy Conditions Role of PSB

metals (Mode of metal remediation)

References

Pseudomonas aeruginosa strain OSG41

Acinetobacter haemolyticus RP19

Pseudomonas sp. A3R3

Pseudomonas sp. TLC 6-6.5-4

Psyclirobacter sp. SRS8

Artlirobacter sp. MT16, Microbacterium sp. JYC17, Pseudomonas chlororaphis SZY6, Azotobacter vinelandii GZC24, Microbacterium lactium YJ7 Bacillus species PSB 10

Pseudomonas sp. SRI2, Psyclirobacter sp. SRS8, Bacillus sp. SN9

Psyclirobacter sp. SRA1, Bacillus cereus SRA10

Achromobacter xylosoxidans strain Ax 10

Pseudomonas sp.

Chickpea (Cicer Cr arietinum )

Pearl millet Zn

(Pennisetum glaucum)

Alyssum Ni

serpyllifolium, Brassica juncea Zea mays, Cu

Helianthus annuus

Ricinus Ni

communis, Helianthus annuus Brassica napus Cu

Pots Increased the dry matter, symbiotic traits, grain yield and grain Oves et al.

protein of chickpea plants in the presence of chromium and (2013) decreased the uptake of chromium by 36, 38 and 40 % in roots, shoots and grains, respectively (Phytostabilization)

Pots Increased significantly root length, shoot length, fresh weight Misra et al.

and root biomass (2012) (Phytostabilization)

Pots Increased significantly the biomass (B. juncea) and Ni content Ma et al.

(A. serpyllifolium) in plants grown in Ni-stressed soil (2011a) (Phytoextraction)

Pots Significantly increased copper uptake by plants and also enhanced Li and

the biomass of maize Ramakrishna

(Phytoextraction) (-011 ^

Pots Stimulated plant growth and Ni accumulation in both plant species Ma et al.

with increased plant biomass, chlorophyll and protein content (2011b) (Phytoextraction)

Increased (16-41 %) root length (Phytoextraction) He et al. (2010)

Gnotobiotic condition

Chickpea (Cicer Cr Pots arietinum )

Brassica juncea, Ni Pots Brassica oxyrrlüna

Brassica juncea, Ni Pots Brassica oxyrrlüna

Brassica juncea Cu Pots

Chickpea

Significantly improved growth, nodulation, chlorophyll, Wani and Khan

leghemoglobin, seed yield and grain protein and reduced (2010) the uptake of chromium in roots, shoots and grains (Phytostabilization)

Increased the biomass of the test plants and enhanced Ni Ma et al.

accumulation in plant tissues (2009a)

(Phytoextraction)

Enhanced the metal accumulation in plant tissues by facilitating Ma et al.

the release of Ni from the non-soluble phases in the soil (2009b) (Phytoextraction)

Significantly improved Cu uptake by plants and increased the root Ma et al.

length, shoot length, fresh weight and dry weight of plants (2009c) (Phytoextraction)

Ni Pots Enhanced fresh and dry weight of plants even at 2 mM nickel Tank and Saraf

concentration (2009) (Phytostabilization)

Table 3 continued

Heavy Conditions Role of PSB

metals (Mode of metal remediation)

References

Enterobacter aerogenes NBRI K24, Rahnella aquatilis NBRI K3

Bacillus weihenstephanensis strain SM3

Pseudomonas aeruginosa strain MKRh3

Enterobacter sp. NBRI K28, mutant NBRI K28 SD1

Burkholderia sp. J62 Bacillus subtilis SJ-101 Pseudomonas sp., Bacillus sp. Pseudomonas fluorescens Pseudomonas sp.

Brassica juncea Ni, Cr Pots

Helianthus annuus

Black gram

Brassica juncea

Lycopersicon esculentum

Ni, Cu, Pots Zn

Ni, Cr, Zn

Pb, Cd Pots

Brassica juncea Ni

Mustard

Soybean

Soybean, mungbean, wheat

Ni, Cd, Cr

Growth chamber

Greenhouse

Increased plant root length, dry weight, leaf protein

and chlorophyll content with Ni and Cr uptake (Phytostabilization)

Increased plant biomass and the accumulation of Cu and Zn in the root and shoot systems, also augmented the concentrations of water soluble Ni, Cu and Zn in soil with their metal mobilizing potential (Phytoextraction)

Plants showed lessened cadmium accumulation, extensive rooting,

and enhanced plant growth (Phytostabilization)

Improved plant growth parameters such as biomass, chlorophyll

and protein and increased Ni, Cr and Zn uptake (Phytoextraction)

Increased root and shoot dry weight as well as Pb and Cd uptake (Phytoextraction) Facilitated Ni accumulation (Phytoextraction)

Stimulated plant growth and decreased Cr(VI) content

(Phytostabilization)

Increased plant growth

(Phytostabilization)

Promotes growth of plants

(Phytostabilization)

Kumar et al. (2009)

Rajkumar et al. (2008)

Ganesan (2008)

Kumar et al. (2008)

Jiang et al. (2008)

Zaidi et al. (2006)

Rajkumar et al. (2006)

Gupta et al. (2005)

Gupta et al. (2002)

damage, they become prone to diseases and pests attack. In practicing phytoextraction strategy, it is paramount important that selected plants must exhibit resistance to phytopathogens in order to smoothly function in metal-stressed soils. Moreover, further exploration and application of PSB strains, possessing additional traits which confer resistance to plants against various diseases, would be a better choice for metal phytoextraction.

Conclusions

Efficiency of phytoremediation of metal-polluted soils is chiefly determined by the metal bioavailability which in turn increases the metal uptake by plants. Hence, PSB compared with other plant growth promoting bacteria would be marvelous alternatives to boost this process as organic acids, and bio-surfactants secreted by these organisms solubilize sparingly soluble metal complexes, consequently increase bioavailability of metals and nutrient supply to soils. Thus, PSB with multifunctional activities (such as production of siderophore, IAA, ACC deaminase, organic acids and anti-pathogen metabolites) are better choice in assisting the phytoremediation process in metal-contaminated soils.

Conflict of interest The authors declare that there is no conflict of interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Ahemad M (2012) Implications of bacterial resistance against heavy

metals in bioremediation: a review. IIOABJ 3:39-46 Ahemad M, Khan MS (2010a) Influence of selective herbicides on plant growth promoting traits of phosphate solubilizing Enterobacter asburiae strain PS2. Res J Microbiol 5:849-857 Ahemad M, Khan MS (2010b) Plant growth promoting activities of phosphate-solubilizing Enterobacter asburiae as influenced by fungicides. Eur Asian J Biosci 4:88-95 Ahemad M, Khan MS (2010c) Phosphate-solubilizing and plant-growth-promoting Pseudomonas aeruginosa PS1 improves greengram performance in quizalafop-p-ethyl and clodinafop amended soil. Arch Environ Contam Toxicol 58:361-372 Ahemad M, Khan MS (2011a) Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa. Acta Microbiol Immunol Hung 58:169-187 Ahemad M, Khan MS (2011b) Effects of insecticides on plant-growth-promoting activities of phosphate solubilizing rhizobac-terium Klebsiella sp. strain PS19. Pestic Biochem Physiol 100:51-56

Ahemad M, Khan MS (2011c) Assessment of plant growth promoting activities of rhizobacterium Pseudomonas putida under insecticide-stress. Microbiol J 1:54-64 Ahemad M, Khan MS (2011d) Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19. Curr Microbiol 62:532-538

Ahemad M, Khan MS (2011e) Pseudomonas aeruginosa strain PS1 enhances growth parameters of greengram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils. J Pest Sci 84:123-131 Ahemad M, Khan MS (2012a) Biotoxic impact of fungicides on plant growth promoting activities of phosphate-solubilizing Klebsiella sp. isolated from mustard (Brassica compestris) rhizosphere. J Pest Sci 85:29-36 Ahemad M, Khan MS (2012b) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86:945-950 Ahemad M, Khan MS (2012c) Evaluation of plant growth promoting activities of rhizobacterium Pseudomonas putida under herbicide-stress. Ann Microbiol 62:1531-1540 Ahemad M, Khan MS (2012d) Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiata (L.) Wilczek] using fungicide-tolerant and plant growth promoting Pseudomonas strain. Saudi J Biol Sci 19:451-459 Ahemad M, Khan MS (2013) Pesticides as antagonists of rhizobia and the legume-Rhizobium symbiosis: a paradigmatic and mechanistic outlook. Biochem Mole Biol 1:63-75 Ahemad M, Kibret M (2013a) Recent trends in microbial biosorption

of heavy metals: a review. Biochem Mol Biol 1:19-26 Ahemad M, Kibret M (2013b) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci. doi:10.1016/j.jksus.2013.05.001 Ahemad M, Malik A (2011) Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol J 2:12-21 Ahemad M, Zaidi A, Khan MS, Oves M (2009) Biological importance of phosphorus and phosphate solubilizing microbes. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova Science Publishers Inc., New York, pp 1-14

Ali H, Khan E, Anwar SM (2013) Phytoremediation of heavy metals-

concepts and applications. Chemosphere 91:869-881 Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC

deaminase in phytoremediation. Trends Biotechnol 25:356-362 Becerra-Castro C, Prieto-Fernandez A, Alvarez-Lopez V, Monterroso C, Cabello-Conejo MI, Acea MJ, Kidd PS (2011) Nickel solubilizing capacity and characterization of rhizobacteria isolated from hyperaccumulating and non-hyperaccumulating subspecies of Alyssum serpyllifolium. Int J Phytoremediat 1:229-244 Chen L, Dodd IC, Theobald JC, Belimov AA, Davies WJ (2013) The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway. J Exp Bot. doi:10. 1093/jxb/ert031

Chodak M, Golebiewski M, Morawska-Ploskonka J, Kuduk K, Niklinska M (2013) Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl Soil Ecol 64:7-14

de-Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol 61:171-189 Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861-864

¿1 Snrinopr

KACSToaüüJlg ^WJ ^ springer

Gamalero E, Glick BR (2012) Plant growth-promoting bacteria and metals phytoremediation. In: Anjum NA, Pereira ME, Ahmad I, Duarte AC, Umar S, Khan NA (eds) Phytotechnologies: remediation of environmental contaminants. CRC Press, Boca Raton, pp 361-376 Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403-407 Gillespie IMM, Philp JC (2013) Bioremediation, an environmental remediation technology for the bioeconomy. Trends Biotechnol. doi:10.1016/j.tibtech.2013.01.015 Glass DJ (1999) U.S. and international markets for phytoremediation,

1999-2000. D. Glass Associates, Needham, p 266 Glick BR (1995) The enhancement of plant growth by free-living

bacteria. Can J Microbiol 41:109-117 Glick BR (2005) Modulation of plant ethylene levels by the bacterial

enzyme ACC deaminase. FEMS Microbiol Lett 251:1-7 Glick BR (2010) Using soil bacteria to facilitate phytoremediation.

Biotechnol Adv 28:367-374 Glick BR (2012) Plant growth-promoting bacteria: mechanisms and

applications. Hindawi Publishing Corporation, Scientifica Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227-242 Goldstein AH (1994) Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by gram-negative bacteria. In: Torriani-Gorini A, Yagil E, Silver S (eds) Phosphate in microorganisms: cellular and molecular biology. ASM, Washington, DC, pp 197-203 Gupta A, Meyer JM, Goel R (2002) Development of heavy metal resistant mutants of phosphate solubilizing Pseudomonas sp. NBRI4014 and their characterization. Curr Microbiol 45:323332

Gupta A, Rai V, Bagdwal N, Goel R (2005) In situ characterization of mercury resistant growth promoting fluorescent pseudomonads. Microbiol Res 160:385-388 Hao X, Xie P, Johnstone L, Miller SJ, Rensing C, Weia G (2012) Genome sequence and mutational analysis of plant-growth-promoting bacterium Agrobacterium tumefaciens CCNWGS0286 isolated from a zinc-lead mine tailing. Appl Environ Microbiol 78:5384-5394

Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated ground-water. J Environ Manag 92:2355-2388 He LY, Zhang YF, Ma HY, Su LN, Chen ZJ, Wang QY, Meng Q, Fang SX (2010) Characterization of copper resistant bacteria and assessment of bacterial communities in rhizosphere soils of copper-tolerant plants. Appl Soil Ecol 44:49-55 He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960-1965

Huang S, Peng B, Yang Z, Chai L, Zhou L (2009) Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. Trans Nonferrous Met Soc China 19:241-248 Jiang CY, Sheng XF, Qian M, Wang QY (2008) Isolation and characterization of a heavy metal resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal polluted soil. Chemosphere 72:157-164 Karuppiah P, Rajaram S (2011) Exploring the potential of chromium reducing Bacillus sp. and there plant growth promoting activities. J Microbiol Res 1:17-23

Khalid A, Akhtar MJ, Mahmood MH, Arshad M (2006) Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology 75:231-236 Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1-19 Kumar KV, Singh N, Behl HM, Srivastava S (2008) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678-683 Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170:51-57 Li K, Ramakrishna W (2011) Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. J Hazard Mater 189:531-539 Liu M, Huang B, Bi X, Ren Z, Shenga G, Fu J (2013) Heavy metals and organic compounds contamination in soil from an e-waste region in South China. Environ Sci Process Impacts 15:919-929 Lugtenberg B, Kamilova F (2009) Plant growth-promoting rhizobac-

teria. Annu Rev Microbiol 63:541-556 Ma Y, Rajkumar M, Freitas H (2009a) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719-725 Ma Y, Rajkumar M, Freitas H (2009b) Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J Hazard Mater 166:1154-1161 Ma Y, Rajkumar M, Freitas H (2009c) Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. J Environ Manag 90:831-837 Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011a) Plant growth promoting rhizobacteria and endophytes accelerate phytoreme-diation of metalliferous soils. Biotechnol Adv 29:248-258 Ma Y, Rajkumar M, Luo Y, Freitas H (2011b) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230-237 Ma Y, Rajkumar M, Vicente JA, Freitas H (2011c) Inoculation of Ni-resistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. Int J Phytoremediat 13:126-139 Martin TA, Ruby MV (2004) Review of in situ remediation technologies for lead, zinc, and cadmium in soil. Remediat Summer. doi:10.1002/rem.20011 Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect 116:278-283 Misra N, Gupta G, Jha PN (2012) Assessment of mineral phosphate-solubilizing properties and molecular characterization of zinc-tolerant bacteria. J Basic Microbiol 52:549-558 Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141-1149 Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Can J Microbiol 55:1302-1309 Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199-212 Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72-83

jjjilliir dlloJI iiii» Л\ Cnrinapr

KAcsTäLLöUiq inkij ^ springer

Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105-126

Panhwar QA, Jusop S, Naher UA, Othman R, Razi MI (2013) Application of potential phosphate-solubilizing bacteria and organic acids on phosphate solubilization from phosphate rock in aerobic rice. Sci World J. doi:10.1155/2013/272409 Peuke AD, Rennenberg H (2005) Phytoremediation. EMBO Rep 6:497-501

Rajkumar M, Nagendran R, Kui JL, Wang HL, Sung ZK (2006) Influence of plant growth promoting bacteria and Cr(VI) on the growth of Indian mustard. Chemosphere 62:741-748 Rajkumar M, Ma Y, Freitas H (2008) Characterization of metal-resistant plant-growth promoting Bacillus weihenstephanensis isolated from serpentine soil in Portugal. J Basic Microbiol 48:500-508

Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142-149 Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635-648

Sandip B, Subrata P, Swati RG (2011) Isolation and characterization of plant growth promoting Bacillus Thuringiensis from agricultural soil of West Bengal. Res J Biotech 6:9-13 Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844-2854

Shaharoona B, Jamro GM, Zahir ZA, Arshad M, Memon KS (2007) Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). J Microbiol Biotech-nol 17:1300-1307 Singh AK, Cameotra SS (2013) Rhamnolipids production by multi-metal-resistant and plant-growth-promoting rhizobacteria. Appl Biochem Biotechnol 170:1038-1056

Singh Y, Ramteke PW, Shukla PK (2013) Isolation and characterization of heavy metal resistant Pseudomonas spp. and their plant growth promoting activities. Adv Appl Sci Res 4:269-272 Sun L, He L, Zhang Y, Zhang W, Wang Q, Sheng X (2009) Isolation and biodiversity of copper-resistant bacteria from rhizosphere soil of Elsholtzia splendens. Wei Sheng Wu Xue Bao 49:1360-1366 Suresh B, Ravishankar GA (2004) Phytoremediation-a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97-124 Swain H, Abhijita S (2013) Nitrogen fixation and its improvement

through genetic engineering. J Global Biosci 2:98-112 Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49:195-204 Upadhayay A, Srivastava S (2012) Evaluation of multiple plant growth promoting traits of an isolate of Pseudomonas fluores-cens strain Psd. Indian J Exp Biol 48:601-609 Walker TS, Bais HP, Deziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation and root exudation. Plant Physiol 134:320-331 Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262-3267 Waterlot C, Bidar G, Pelfrene A, Roussel H, Fourrier H, Douay F (2013) Contamination, fractionation and availability of metals in urban soils in the vicinity of former lead and zinc smelters, France. Pedosphere 23:143-159 Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415-424 Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ 101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991-997

¿1 Snrinopr

KAcsTiuiUi, ^wj ^ springer