Scholarly article on topic 'Hyperchaos synchronization of memristor oscillator system via combination scheme'

Hyperchaos synchronization of memristor oscillator system via combination scheme Academic research paper on "Mathematics"

0
0
Share paper
Academic journal
Adv Diff Equ
OECD Field of science
Keywords
{""}

Academic research paper on topic "Hyperchaos synchronization of memristor oscillator system via combination scheme"

0 Advances in Difference Equations

a SpringerOpen Journal

RESEARCH Open Access

Hyperchaos synchronization of memristor oscillator system via combination scheme

Ailong Wu*

Correspondence: hbnuwu@yeah.net College of Mathematics and Statistics, Hubei NormalUniversity, Huangshi, 435002, China Institute for Information and System Science, Xi'an Jiaotong University, Xi'an, 710049, China Full list of author information is available at the end of the article

Abstract

In this paper, a hyperchaotic memristor oscillator system is introduced. A new type of synchronization design is proposed to achieve combination synchronization among three different memristor oscillator systems. This all-new control technique can be applied to the general nonlinear systems. The theoretical analysis is verified with numerical simulations showing excellent agreement.

Keywords: memristor; hybrid systems; hyperchaos; combination synchronization

1 Introduction

In recent years, lots of memristor oscillator systems have been used with the purpose of generating signals which are found in radio, satellite communications, switching power supply, etc. [1-10]. By using a passive two-terminal memristor, the memristor oscillator can be fully implemented on-chip with some simple circuit elements. Memristor oscillator systems are good to be used for developing memristive devices and memristive computing. The non-volatile memory of memristor oscillator system has tremendous potential in the dynamic memory and neural synapses [4]. Furthermore, the property can provide us with new methods for high performance computing. Along with the widening of mem-ristor applications, it is necessary to do some deep and detailed research on the related nonlinear dynamics [11-13]. Nonlinear dynamics of memristor oscillator systems is extraordinarily complex [1-4, 6, 8,10]. Chaotic behavior, sequence of period-doubling bifurcations, inverse sequence of chaotic band, and intermittent chaos are found in various memristor oscillator systems [1-4, 6, 8]. It should be emphasized that hyperchaos with more than one positive Lyapunov exponents has always been a research focus in the fields of lasers, nonlinear oscillators, nonlinear control, secure communication, and so on. Can we design a hyperchaotic memristor oscillator system and investigate its hyperchaotic dynamics? Apparently, this problem is not only of theoretical issue but also a problem of tech-economy as regards electronic circuits. At present, there is little literature on this topic. Based on this consideration, this paper will make a contribution in the context of hyperchaotic memristor oscillator system. In this paper, a fourth-order hyperchaotic memristor oscillator system is systematically illustrated.

Chaotic behavior may be unpredictable, uncoordinated, and constantly shifting under many circumstances. Because of this, chaotic dynamics, synchronization of coupled dynamic systems, and secure communications are always some hot research fields [11,1447]. Thus, chaotic systems and the related chaos synchronization problems are important

Springer

©2014 Wu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

and challenging. By considering linear or nonlinear observers and designing suitable synchronizing signals, a mass of synchronization schemes are developed, such as complete synchronization [11, 14-18], anti-synchronization [19-24], phase synchronization [16, 25-27], lag synchronization [17, 28-36], projective synchronization [17, 37-45], combination synchronization [46, 47]. In the conventional drive-response synchronization schemes, there is just one drive system and one response system. This type of synchronization scheme can be viewed as one-to-one system design and implementation. One-to-one system design and implementation would seem singularly unsuited in many fields of engineering application. In reality, the transmitted signals in secure communication via one-to-one system design and implementation are less vulnerable to malicious attacks and decoding. In many cases, we need to split the transmitted signals into several parts, and then different drive systems load different parts. Therefore, a natural and interesting question is whether we can design some novel synchronization schemes between multi-drive systems and one response system, or between multi-drive systems and multi-response systems? And no matter what the theories say, or what the actual engineering aspects are, these questions are definitely worth exploring. For this reason, based on the combination synchronization in [46, 47], our other objective in this paper is to study the hyperchaos synchronization between two drive memristor oscillator systems and one response mem-ristor oscillator system. The analysis framework and theoretical results in this paper may play an important role in designing memristor oscillatory circuits, sensitive control systems, and signal generation, etc.

Motivated by the above discussions, in this paper, we first introduce and study a hyper-chaotic memristor oscillator system. Then we propose a new type of hyperchaos combination synchronization scheme based on two drive systems and one response system. The generalization of synchronization scheme will provide a wider scope for engineering designs and applications. Finally, numerical simulations demonstrate the effectiveness and feasibility of the proposed control scheme. The proposed method in this paper can be applied to the general nonlinear systems.

2 Preliminaries

In this paper, consider a fourth-order memristor oscillator system with its dynamics described by the following equations:

where vi(t) and v2(t) denote voltages, C1 and C2 represent capacitors, W(<(t)) is mem-ductance function, R1 and R2 are resistors, <(t), i(t), L and G are magnetic flux, current, inductor and conductance, respectively.

Using the mathematical model of a cubic memristor [1,2,8], the memductance function is given by

< (t) = V1(t),

- W(<(t))n(t),

i(t) = -\ v2(t)- l m,

W (<(t)) = a + 3b<(t)2,

where a and b are parameters.

From (1) and (2), it follows that

< (t) V1(t)

= V1(t),

CRV2(t)- crRrV1(t) + cG1 V1(t)" V2(t) = cR v1(t)-' 1

C2R^. C2Rr V2(t) + ¿2l(t),

i(t) = -\ v2(t)- R2 i(t).

a v1(t)

- Cb <(t)2v1(t),

By merging similar items,

< (t) = V1(t), V1(t) = CR V2(t)-

ajMt)- Cb <(t)2v1(t),

V2(t) = C2R1 V1(t)- c2R-V2(t) + C2m,

i(t) = -L V2(t)- R21(f).

Let xn(t) = <(t), X12(t) = V1(t), X13(t) = V2(t), X14(t) = i(t), a1 = Cr^, a2 = cR- - G + ¿a;, a3 = lb, a4 = , a5 = C-, a6 = L, a7 = R2, then (4) can be rewritten as

x11 = x12,

X12 = a1X13 - a2X12 - a3X21X12, 12 1 13 2 12 3 11 12 (5)

X13 = a4X12 - a4X13 + a5X14, X14 = -a6X13 - a7X14.

Choose parameters a1 = 16.4, a2 = -3.28, a3 = 19.68, a4 = 1, a5 = 1, a6 = 15, a7 = 0.5, the initial state X11(0) = 0.01, X12(0) = 0.01, X13(0) = 0.01, X14(0) = 0.01, by means of a computer program with MATLAB, the corresponding Lyapunov exponents of system (5) are 0.350741, 0.013755, -0.008567, -7.812913. The numerical result is shown in Figure 1,

Figure 3 3D Projection of the hyperchaotic attractor from the fourth-order memristor 3 oscillator system,x11 vs.x12 vs.x14. 2 0. X memristor attractor: 3D projection '-1 X" "1 ^ " *«

Figure 4 3D Projection of the hyperchaotic , attractor from the fourth-order memristor oscillator system,x11 vs.x13 vs.x14. ' f 0 memristor attractor: 3D projection 0.5 ........4 -0.5 —..........-2 x44 -1-4 y 11 x14

Figure 5 3D Projection of the hyperchaotic attractor from the fourth-order memristor oscillator system,x12 vs.x13 vs.x14. 2 X memristor attractor: 3D projection —' 0.5 "1 0 -3 . -0-5 *,2 "1 x,3

where the first two Lyapunov exponents are positive. Clearly, it implies that memristor oscillator system (5) is hyperchaotic. Figures 2-5 describe the hyperchaotic attractors.

Remark 1 Although various chaotic memristor oscillator systems have been analyzed extensively in recent years, the hyperchaotic memristor oscillator system is rarely reported and investigated directly. However, the memristor oscillator system (5) achieves hyperchaotic characteristics. Thus, hyperchaotic memristor oscillator system (5) is important for our understanding of the hyperchaotic memristive system.

Now we introduce the scheme of combination synchronization that is needed later. Consider the first drive system

X1 =/1X1). (6)

The second drive system is given by

X2 = /2X2),

and the response system is described by

X3 =fs(X3) + «(X1, X2, X3), (8)

where state vectors X1 = (X11,X12,...,X1n)T, X2 = (X21,X22,...,X2n)T, X3 = (X31,X32,..., X3n)T, vector functionsfKO^OfsO : — , «(X1,X2,X3) = («1,«2,...,«n)T : x x ■ ■ ■ x — is the appropriate control input that will be designed in order to obtain a certain control objective.

Definition 1 The drive systems (6), (7), and the response system (8) are said to be combination synchronization if there exist n-dimensional constant diagonal matrices A1, A2, and A3 = 0 such that

lim ||e|| = lim ||A1X1 + A2X2-A3X3|| = 0, (9)

t—t—

where || ■ || is vector norm, e = (e1,e2,...,en)T is the synchronization error vector, X1 = diag(xu, X12,..., X1n), X2 = diag(x21, X22,..., X2n), X3 = diag(x31, X32,..., X3n).

Remark 2 In Definition 1, matrices A1, A2, and A3 are often called the scaling matrices. The scheme of combination synchronization is an improvement and extension of the existing synchronization schemes in the literature. When the scaling matrices A1 = 0 or A2 = 0, the combination synchronization will degrade into complete synchronization. When the scaling matrices A1 = A2 = 0, the combination synchronization will change into chaos control.

3 Synchronization criteria

In this paper, consider system (5) as the first drive system and the second drive system is given by

X 21 = X22,

x22 = A*23 - ß2X22 - ß3x2ix22,

X23 = ß4X22 - ß4X23 + ß5X24, X24 = —ßöX23 - ßlX24,

the response system is described by

x 31 = x32 + ui,

X32 = K1X33 - X2X32 - Y3X21X32 + U2, X33 = Y4X32 - Y4X33 + Y5X34 + U3, X34 = -Y6X33 - Y7X34 + U4,

where ft, ft, ft, ft, ft, ft, ft, Y1, Y2, Y3, Y4, Y5, Y6, and Y7 are parameters, «1, «2, «3, «4 are the appropriate control inputs that will be designed.

In our combination synchronization scheme, let A1 = diag(«n, «12, «13, «14), A2 = diag(«21, «22, «23, «24), A3 = diag(«31, «32, «33, «34), thus

e1 = «11X11 + «21X21 - «31X31, e2 = «12X12 + «22X22 - «32X32, e3 = «13X13 + «23X23 - «33X33, e4 = «14X14 + «24x24 - «34x34.

Obviously, we have

e1 = «11X11 + «21X21 - «31X 31, e2 = «12X12 + «22X22 - «32X32, e3 = «13X13 + «23X23 - «33X 33,

e4 = «14x14 + «24x24 - «34x 34.

Combining with (5), (10), and (11), then the synchronization error system (13) can be transformed into the following form:

e1 = «11X12 + «21X22 - «31(X32 + «1),

e2 = «12(«1X13 - «2X12 - «3XnX12) + «22(^1X23 - P2X22 - ^3X21X22)

- «32(Y1X33 - Y2X32 - Y3X21X32 + «2), (14) e3 = «13(^4X12 - «4X13 + «5X14) + «23(^4X22 - P4X23 + P5X24)

- «33Y4X32 - Y4X33 + Y5X34 + «3), e4 = «14(-«6X13 - «7X14) + «24(-ftX23 - P7X24) - «34(-Y6X33 - Y7X34 + «4).

Theorem 1 If the controller is chosen «s

«1 = «t [«11(X11 + X12) + «21 (X21 + X22)- «31(X31 + X32) + «12X12 - «14X14

+ «22X22 - «24X24 - «32X32 + «34X34], «2 = «12 [«12 [«1X13 + (1 - «2)X12 - «3XnX12] + «22 [P1X23 + (1 - ^2)X22 - P3X21X22]

- «32 [Y1X33 + (1 - Y2)X32 - Y3X31X32] - «11X11 + «13X13 - «21X21 + «23X23 + «31X31 - «33X33], (15)

«3 = «3 [«13 ["4X12 + (1 - «4)X13 + «5X14] + «23 [P4X22 + (1 - P4)X23 + P5X24]

- «33 [Y4X32 + (1 - Y4)X33 + Y5X34] - «12X12 + «14X14

- «22X22 + «24X24 + «32X32 - «34X34], «4 = «b [«14(-«6X13 - «7X14) + «24(-P6X23 - P7X24)

- «34(-Y6X33 - Y7X34) + «11X11 - «13X13

+ «14X14 + «21X21 - «23X23 + «24X24 - «31X31 + «33X33 - «34X34],

then the driven systems (5) «nd (10) will «chieve combin«tion synchroniz«tion with the response system (11).

Proof Choose the following Lyapunov function:

V (e(t)) = V (e1, e2, e3, e4) = 2 (e? + e2 + el + e4). (6)

Calculating the upper right Dini-derivative D+ V of V along with the trajectory of system (14), we have

D+V = eiei + e2e2 + e3e3 + e4e4

= e1 [«11X12 + «21^22 - «31(X32 + U1)] + e2 [«12 («1X13 - «2X12 - «3XuX12) + «22 (P1X23 - P2X22 - ^3X221X22) - «32 (K1X33 - K2X32 - Y3X231X32 + U2)] + e3 [«13 («4X12 - «4X13 + «5X14) + «23(^4X22 - P4X23 + ^5X24)

- «33(74X32 - K4X33 + Y5X34 + U3)]

+ e4 [«14(-«6X13 - «7X14) + «24(-^6X23 - ^7X24)

- «34(-K6X33 - K7X34 + U4)]. (7) Substituting (15) into (17), then

D+V = e1 [-(«11X11 + «21X21 - «31X31) - («12X12 + «22X22 - «32X32) + («14X14 + «24X24 - «34X34)]

+ e2 [-(«12X12 + «22X22 - «32X32) - («13X13 + «23X23 - «33X33)

+ («11X11 + «21X21 - «31X31)]

+ e3 [-(«13X13 + «23X23 - «33X33) - («14X14 + «24X24 - «34X34) + («12X12 + «22X22 - «32X32)]

+ e4 [-(«14X14 + «24X24 - «34X34) - («11X11 + «21X21 - «31X31) + («13X13 + «23X23 - «33X33)]

= e1(-e1 - e2 + e4) + e2(-e2 - e3 + e^ + e3(-e3 - e4 + e2) + e4(-e4 - e1 + e3)

2222 = -e1 - e2 - e3 - e4

= -eTe, (8)

where e = (e1, e2, e3, e4, e5)T. Let t > 0 be arbitrarily given, integrating the above equation (18) from 0 to t, then

i ||e(s)||2ds = i -Vds = V(e(0)) - V(e(t)) < V(e(0)),

where || • || is the Euclidean vector norm.

According to Barbalat's lemma, we have ||e(t) ||2 ^ 0 as t ^ Hence, (e1, e2, e3, e4) ^ (0,0,0,0) as t ^ It implies that the driven systems (5) and (10) can achieve combination synchronization with the response system (11). The proof is completed. □

Next, some corollaries can be directly derived from Theorem 1.

Corollary 1 I/the controller is chosen «s

U1 = -1- [«n(Xu + X12) - «31(X31 + X32) + «12X12 - «14X14 - «32X32 + «34X34],

U2 = «12 [«12 [«1X13 + (1 - «2^12 - «3XnX12] - «32 [ftX33 + (1 - ^32 - ^X^X32]

- «11X11 + «13X13 + «31X31 - «33X33],

U3 = «3 [«13 [«4X12 + (1 - «4^13 + «5X14] - «33 Y4X32 + (1 - K4)X33 + Y5X34]

- «12X12 + «14X14 + «32X32 - «34X34],

U4 = «t: [«14(-«6X13 - «7X14) - «34(-K6X33 - ^7X34) + «11X11 - «13X13 + «14X14

- «31X31 + «33X33 - «34X34],

then the driven system (5) will «chieve complete synchroniz«tion with the response system (11).

Corollary 2 If the controller is chosen «s

U1 = -1- [«21 (X21 + X22) - «31(X31 + X32) + «22X22 - «24X24 - «32X32 + «34X34],

U2 = «12 [«22 [¡1X23 + (1 - ft)X22 - ¡¡3X21X22] - «32 [>1X33 + (1 - Y2)X32 - ^X^X32]

- «21X21 + «23X23 + «31X31 - «33X33],

U3 = «3 [«23 [^4X22 + (1 - ¡>23 + ¡5X24] - «33 Y4X32 + (1 - K4)X33 + Y5X34}

- «22X22 + «24X24 + «32X32 - «34X34],

U4 = «4 [«24(-¡6X23 - ¡7X24) - «34(-K6X33 - ^7X34)

+ «21X21 - «23X23 + «24X24 - «31X31 + «33X33 - «34X34],

then the driven system (10) will «chieve complete synchroniz«tion with the response system (11).

Corollary 3 If the controller is chosen «s

U1 = «11 [-«31(X31 + X32) - «32X32 + «34X34], U2 = «32 [-«32 [Y1X33 + (1 - Y2)X32 - Y3X21X32] + «31X31 - «33X33], U3 = «3 [-«33 [K4X32 + (1 - K4)X33 + ^5X34] + «32X32 - «34X34], U4 = «4[-«34(-Y6X33 - ^7X34) - «31X31 + «33X33 - «34X34],

then system (11) is «symptotic«lly st«biliz«ble.

Remark 3 The results obtained in Theorem 1 and Corollaries 1-3 either yield new, or extend, to a large extent, most of the existing results. To the best of our knowledge, few authors have considered synchronization control of the hyperchaotic memristor oscillator system. In fact, the control design of hyperchaotic memristor oscillator system is necessary and rewarding, in order to understand the memristive dynamics.

4 An illustrative example

In this section, a numerical example is given to verify the feasibility and effectiveness of the proposed control technique via computer simulations.

Assuming that parameters a1 = ¡1 = y1 = 16.4, a2 = ¡2 = y2 = -3.28, a3 = ¡3 = y3 = 19.68, a4 = ¡4 = y4 = 1, a5 = ¡5 = Y5 = 1, a6 = ¡6 = Y6 = 15, a7 = ¡7 = Y7 = 0.5, the scaling matrices

A1 = diag(«u, «12, «13, «14) = diag(1, 1, 1, 1), A2 = diag(«21, «22, «23, «24) = diag(1, 1, 1, 1), A3 = diag(«31, «32, «33, «34) = diag(1,1,1,1), the controller is chosen as

«1 = X11 + 2X12 - X14 + X21 + 2X22 - X24 - X31 - 2X32 + X34,

«2 = 17.4x13 + 4.28x12 - 19.68x21x12 + 17.4x23 + 4.28x22 - 19.68x21x22 - 17.4x33 - 4.28x32 + 19.68x21x32 -X11 -X21 + X31,

«3 = 2X14 + 2X24 - 2X34,

«4 = x11 - 16x13 + 0.5x14 + x21 - 16x23 + 0.5x24 - x31 + 16x33 - 0.5x34,

according to Theorem 1, then the driven systems (5) and (10) will achieve combination synchronization with the response system (11). Figures 6-9 depict the time response of the synchronization error e = (e1, e2, e3, e4)T.

It is worth pointing out that the result in the above numerical example cannot be obtained by using any existing results.

5 Concluding remarks

This paper has introduced a hyperchaotic memristor oscillator system and presented a novel control method using combination scheme to drive two memristor oscillator systems to synchronize one response memristor oscillator system. The resulting hyperchaos synchronization via combination scheme is also verified by computer simulations. It is believed that the derived results and analytical techniques have great potential in controlling various hyperchaotic systems and hyperchaotic circuits, which open up a wide area for further research of chaos and hyperchaos memristive dynamics.

Competing interests

The author declares that he has no competing interests. Author's contributions

The author drafted the manuscript, read and approved the finalmanuscript Author details

College of Mathematics and Statistics, Hubei NormalUniversity, Huangshi, 435002, China. Institute for Information and System Science, Xi'an Jiaotong University, Xi'an, 710049, China. Schoolof Automation, Huazhong University of Science and Technology, Wuhan, 430074, China.

Acknowledgements

The author would like to express the sincere gratitude to Editor for handling the process of reviewing the paper, as wellas to the reviewers who carefully reviewed the manuscript. The work is supported by the NaturalScience Foundation of China under Grant 61304057.

Received: 12 October 2013 Accepted: 26 February 2014 Published: 13 Mar 2014 References

1. Bao, BC, Liu, Z, Xu, JP: Steady periodic memristor oscillator with transient chaotic behaviours. Electron. Lett. 46(3), 237-238(2010)

2. Bao, BC, Liu, Z,Xu, JP: Transient chaos in smooth memristor oscillator. Chin. Phys. B 19(3), 030510 (2010)

3. Corinto, F, Ascoli, A, Gilli, M: Nonlinear dynamics of memristor oscillators. IEEE Trans. Circuits Syst. I, Regul. Pap. 58(6), 1323-1336 (2011)

4. Itoh, M, Chua, LO: Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183-3206 (2008)

5. Li,ZJ, Zeng, YC: A memristor oscillator based on a twin-7 network. Chin. Phys. B 22(4), 040502 (2013)

6. Muthuswamy, B, Kokate, PP: Memristor based chaotic circuits. IETE Tech. Rev. 26(6), 417-429 (2009)

7. Riaza, R: First order mem-circuits: modeling, nonlinear oscillations and bifurcations. IEEE Trans. Circuits Syst. I, Regul. Pap. 60(6), 1570-1583 (2013)

8. Sun, JW, Shen, Y, Yin, Q, Xu, CJ: Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos 23(1), 013140 (2013)

9. Talukdar, A, Radwan, AG, Salama, KN: Generalized modelfor memristor-based Wien family oscillators. Microelectron. J. 42(9), 1032-1038(2011)

10. Talukdar, A, Radwan, AG, Salama, KN: Non linear dynamics of memristor based 3rd order oscillatory system. Microelectron. J. 43(3), 169-175 (2012)

11. Wu, AL, Wen, SP, Zeng, ZG: Synchronization control of a class of memristor-based recurrent neuralnetworks. Inf. Sci. 183(1), 106-116(2012)

12. Wu, AL, Zeng, ZG: Dynamic behaviors of memristor-based recurrent neuralnetworks with time-varying delays. NeuralNetw. 36,1-10(2012)

13. Wu, AL, Zeng, ZG: Exponentialstabilization of memristive neuralnetworks with time delays. IEEE Trans. NeuralNetw. Learn. Syst. 23(12), 1919-1929 (2012)

14. Choi, YP, Ha, SY, Yun, SB: Complete synchronization of Kuramoto oscillators with finite inertia. Physica D 240(1), 32-44 (2011)

15. Li, FF, Lu, XW: Complete synchronization of temporalBoolean networks. NeuralNetw. 44, 72-77 (2013)

16. Ma, J, Li, F, Huang, L, Jin, WY: Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system. Commun. Nonlinear Sci. Numer. Simul. 16(9), 3770-3785 (2011)

17. Wu, XJ, Lu, HT: Generalized function projective (lag, anticipated and complete) synchronization between two different complex networks with nonidenticalnodes. Commun. Nonlinear Sci. Numer. Simul. 17(7), 3005-3021 (2012)

18. Yao, CG, Zhao, Q, Yu, J: Complete synchronization induced by disorder in coupled chaotic lattices. Phys. Lett. A377(5), 370-377 (2013)

19. Chen, Q, Ren, XM, Na, J: Robust anti-synchronization of uncertain chaotic systems based on multiple-kernelleast squares support vector machine modeling. Chaos Solitons Fractals 44(12), 1080-1088 (2011)

20. Fu, GY, Li, ZS: Robust adaptive anti-synchronization of two different hyperchaotic systems with externaluncertainties. Commun. Nonlinear Sci. Numer. Simul. 16(1), 395-401 (2011)

21. Liu, ST, Liu, P Adaptive anti-synchronization of chaotic complex nonlinear systems with unknown parameters. Nonlinear Anal., RealWorld Appl. 12(6), 3046-3055 (2011)

22. Wu, YQ, Li, CP, Yang, AL, Song, LJ, Wu, YJ: Pinning adaptive anti-synchronization between two generalcomplex dynamicalnetworks with non-delayed and delayed coupling. Appl. Math. Comput. 218(14), 7445-7452 (2012)

23. Zhang, GD, Shen, Y, Wang, LM: Globalanti-synchronization of a class of chaotic memristive neuralnetworks with time-varying delays. NeuralNetw. 46,1-8 (2013)

24. Zhao, HY, Zhang, Q: Globalimpulsive exponentialanti-synchronization of delayed chaotic neuralnetworks. Neurocomputing 74(4), 563-567 (2011)

25. Li, D, Li, XL, Cui, D, Li, ZH: Phase synchronization with harmonic wavelet transform with application to neuronal populations. Neurocomputing 74(17), 3389-3403 (2011)

26. Odibat, Z: A note on phase synchronization in coupled chaotic fractionalorder systems. Nonlinear Anal., RealWorld Appl. 13(2), 779-789 (2012)

27. Taghvafard, H, Erjaee, GH: Phase and anti-phase synchronization of fractionalorder chaotic systems via active control. Commun. Nonlinear Sci. Numer. Simul. 16(10), 4079-4088 (2011)

28. Feng, JW, Dai, AD, Xu, C, Wang, JY: Designing lag synchronization schemes for unified chaotic systems. Comput. Math. Appl. 61 (8), 2123-2128 (2011)

29. Guo, WL: Lag synchronization of complex networks via pinning control. Nonlinear Anal., RealWorld Appl. 12(5), 2579-2585 (2011)

30. Ji, DH, Jeong, SC, Park, JH, Lee, SM, Won, SC: Adaptive lag synchronization for uncertain complex dynamicalnetwork with delayed coupling. Appl. Math. Comput. 218(9), 4872-4880 (2012)

31. Pourdehi, S, Karimaghaee, P, Karimipour, D: Adaptive controller design for lag-synchronization of two non-identical time-delayed chaotic systems with unknown parameters. Phys. Lett. A 375(17), 1769-1778 (2011)

32. Wang, LP, Yuan, ZT, Chen, XH, Zhou, ZF: Lag synchronization of chaotic systems with parameter mismatches. Commun. Nonlinear Sci. Numer. Simul. 16(2), 987-992 (2011)

33. Wang, ZL, Shi, XR: Lag synchronization of two identicalHindmarsh-Rose neuron systems with mismatched parameters and externaldisturbance via a single sliding mode controller. Appl. Math. Comput. 218(22), 10914-10921 (2012)

34. Xing, ZW, Peng, JG: Exponentiallag synchronization of fuzzy cellular neuralnetworks with time-varying delays. J. Franklin Inst. 349(3), 1074-1086(2012)

35. Yang, XS, Zhu, QX, Huang, CX: Generalized lag-synchronization of chaotic mix-delayed systems with uncertain parameters and unknown perturbations. Nonlinear Anal., RealWorld Appl. 12(1), 93-105 (2011)

36. Yu, J, Hu, C, Jiang, HJ, Teng, ZD: Exponentiallag synchronization for delayed fuzzy cellular neuralnetworks via periodically intermittent control. Math. Comput. Simul. 82(5), 895-908 (2012)

37. Farivar, F, Shoorehdeli, MA, Nekoui, MA, Teshnehlab, M: Generalized projective synchronization of uncertain chaotic systems with externaldisturbance. Expert Syst. Appl. 38(5), 4714-4726 (2011)

38. Li, ZB, Zhao, XS: Generalized function projective synchronization of two different hyperchaotic systems with unknown parameters. Nonlinear Anal., RealWorld Appl. 12(5), 2607-2615 (2011)

39. Si, GQ, Sun, ZY, Zhang, YB, Chen, WQ: Projective synchronization of different fractional-order chaotic systems with non-identicalorders. Nonlinear Anal., RealWorld Appl. 13(4), 1761-1771 (2012)

40. Wang, S, Yu, YG, Wen, GG: Hybrid projective synchronization of time-delayed fractionalorder chaotic systems. Nonlinear Anal. Hybrid Syst. 11, 129-138(2014)

41. Wang, XY, Fan, B: Generalized projective synchronization of a class of hyperchaotic systems based on state observer. Commun. Nonlinear Sci. Numer. Simul. 17(2), 953-963 (2012)

42. Wu, XJ, Wang, H, Lu, HT: Hyperchaotic secure communication via generalized function projective synchronization. Nonlinear Anal., RealWorld Appl. 12(2), 1288-1299 (2011)

43. Xiao, JW, Wang, ZW, Miao, WT, Wang, YW: Adaptive pinning control for the projective synchronization of drive-response dynamicalnetworks. Appl. Math. Comput. 219(5), 2780-2788 (2012)

44. Yu, YG, Li, HX: Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design. Nonlinear Anal., RealWorld Appl. 12(1), 388-393 (2011)

45. Zhou, P, Zhu, W: Function projective synchronization for fractional-order chaotic systems. Nonlinear Anal., RealWorld Appl. 12(2), 811-816(2011)

46. Luo, RZ, Wang, YL, Deng, SC: Combination synchronization of three classic chaotic systems using active backstepping design. Chaos 21 (4), 043114(2011)

47. Sun, JW, Shen, Y, Zhang, GD, Xu, CJ, Cui, GZ: Combination-combination synchronization among four identicalor different chaotic systems. Nonlinear Dyn. 73(3), 1211-1222 (2013)

10.1186/1687-1847-2014-86

Cite this article as: Wu: Hyperchaos synchronization of memristor oscillator system via combination scheme.

Advances in Difference Equations 2014, 2014:86