Scholarly article on topic 'Cavernous hemangioma of the third ventricle: a case report and review of the literature'

Cavernous hemangioma of the third ventricle: a case report and review of the literature Academic research paper on "Clinical medicine"

0
0
Share paper
Academic journal
World J Surg Onc
OECD Field of science
Keywords
{""}

Academic research paper on topic "Cavernous hemangioma of the third ventricle: a case report and review of the literature"

WORLD JOURNAL OF SURGICAL ONCOLOGY

CASE REPORT Open Access

Cavernous hemangioma of the third ventricle: a case report and review of the literature

Moon-Soo Han1, Kyung-Sub Moon1*, Kyung-Hwa Lee2, Seul-Kee Kim3 and Shin Jung1

Abstract

Background: Although cavernous hemangiomas (CHs) can be found anywhere in the central nervous system, CHs of the third ventricle have been reported in only 29 patients (including our case). In the current case report, we discuss the clinical characteristics and surgical outcome of CHs of the third ventricle.

Case presentation: A 64-year-old female was admitted to our emergency room with a sudden decreased level of consciousness. Brain imaging studies demonstrated a multi-lobulated hemorrhagic mass in the third ventricle. The lesion was removed via the transcallosal-interforniceal approach and pathologically diagnosed as CH. Postoperatively, the patient had a transient neurological deficit due to hypothalamic injury and recovered to the normal status at 2 months after the operation. In the review of 29 cases, the mean age of the patients was 40 years with a slight female preponderance (female/male, 17/12). The majority of the patients complained of a mass effect with signs of increased intracranial pressure; only one case was asymptomatic. Gross total resection was achieved in 81% of the cases. Around 80% of the patients were asymptomatic or improved from the initial symptoms. Mortality rate was 6.9% and the most common complication was hydrocephalus. Conclusions: As demonstrated in the review of the previous reports, the outcome is favorable after surgical excision for CH of the third ventricle. Hence, surgical excision appears to be the treatment of choice for CH located in the third ventricle, which tends to grow rapidly resulting in a mass effect.

Keywords: Cavernous hemangioma, Complication, Outcome, Surgery, Third ventricle

Background

Cavernous hemangiomas (cavernomas, cavernous angi-omas, cavernous malformations; CH) are vascular hamartomas that are reported to be found at any location in the central nervous system (CNS). Due to the increased use of computerized tomography (CT) scan and magnetic resonance imaging (MRI), more CHs have been diagnosed in recent years. However, intraventricular location of CHs is uncommon, and the incidence of intra-ventricular CHs has been reported to be only about 2.5 to 10.8% of all intracranial CHs [1,2]. The most frequent location of intraventricular CHs is the lateral ventricle and involvement of the third ventricle is quite rare. Based on the

* Correspondence: moonks@chonnam.ac.kr

department of Nueurosurgery, Chonnam NationalUniversity Research Institute of MedicalScience, Chonnam NationalUniversity Hwasun Hospital& Medical School, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 519-763, South Korea

Fulllist of author information is available at the end of the article

review of Medline database (PubMed, http://www.ncbi.nlm. nih.gov/PubMed), only 29 cases (including our case) of CH of the third ventricle have been reported [3-20].

We present the case of a patient who had a CH in the third ventricle that was resected through the trans-callosal interforniceal approach. In addition, we also review the previously reported cases and discuss their clinical characteristics and surgical outcomes.

Case presentation

A 64-year-old female was admitted to our emergency room with a sudden decreased level of consciousness. Except for an intermittent and mild degree headache, there was no specific history of head trauma and medical illness. On neurological examination, she showed a drowsy mentality with Glasgow Coma Scale score of 14/15 and the right homonymous hemianopsia. She did not have motor/sensory and cranial nerve deficits, and cerebel-lar signs. There were no abnormal laboratory findings. Non-contrasted CT scan showed a heterogeneously

O© 2014 Han et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative BnlVled CBntf3l Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Figure 1 Axial non-contrast CT images show a large and heterogeneously hyperattenuated hemorrhagic mass in the suprasellar area, with dilatation of the anterior part of the third ventricle (arrow).

hyperattenuated hemorrhagic mass within the third ventricle compressing the hypothalamus, without definitive hydrocephalus (Figure 1). Brain MRI revealed a 40 x 30 x 28 mm sized multi-lobulated mass with a recent hemorrhage in the third ventricle, which extended to the foramen of Monro and hypothalamus. There was no definite contrast enhancement (Figure 2).

Right-side interhemispheric, transcallosal interforniceal approach was used for removal of the lesion. At surgery, the lesion was found to be a red colored, multi-lobulated

mass, which had numerous vascular channels and multi-staged hemorrhage. Although there were severe adhesions between the base of the lesion and the basilar arterial system, gross total removal of the lesion was possible due to the presence of the discrete sticky hemo-siderin rim, which allowed differentiation of the lesion from the surrounded normal parenchyma (Figure 3). To prevent hypothalamic injury, the resection of hemosiderin-stained tissue was restricted to the minimum.

Histopathological examination of the lesion revealed a CH composed of large, irregularly dilated, blood-filled vascular channels lined by flat endothelium (Figure 4). Postoperatively, the patient developed transient diabetes insipidus, somnolence, and general weakness due to hypo-thalamic injury, but these symptoms gradually disappeared with conservative treatment. Finally, she recovered to the normal status at 2 months after the operation.

Discussion

CHs are vascular hamartomas which are reported to be found anywhere in the CNS. However, intraventricular CHs are rare and their incidence was reported to be only about 2.5 to 10.8% of all cerebral cavernous malformations [1,2]. CHs may be diagnosed based on symptoms of acute hemorrhage, seizures, or progressive neurologic deficits. Chadduck et al. [21] reported that there was no

Figure 2 Preoperative MRI images. SagittalT1-weighted (A) and post-contrast ^-weighted (B) images show a non-enhancing hemorrhagic mass in the anterior third ventricle and hypothalamic area. AxialT1-weighted (C), T2-weighted (D), and susceptibility weighted (E) images demonstrate a typicalcavernous malformation with heterogeneous signal intensity and hemosiderin rim indicating mixed acute or subacute stage hemorrhage.

Figure 3 Intraoperative photographs through transcallosal interforniceal approach. (A) After dissection of the corpus callosum, the interfornicealplane (asterisk) was observed between the bilateralseptum pallucidum; (B) After entering the third ventricle via the interforniceal approach, a red-colored and multi-lobulated cavernous hemangioma with numerous vascular channels and different-staged hemorrhage was encountered; (C and D) Removalof the lesion revealed the patency of the Sylvian aqueduct (asterisk) over the massa intermedia and the basilar system in the base of the lesion.

Figure 4 Pathologic findings of the cavernous hemangioma.

The microphotograph displayed a blood-filled lesion composed of irregularly dilated channels and a slightly fibrotic capsule surrounding the lesion (hematoxylin and eosin, original magnification x 100).

difference between the clinical symptoms and signs of intraventricular CHs and parenchymal CHs. However, because of the rarity, the natural history and clinical features of CHs located in the third ventricle have not been fully investigated and there are no definite recommendations for its management.

Overall, 29 patients with a well-described CH in the third ventricle have been reported in the literature, including our case [3-20] (Table 1), with a slight female preponderance (female/male ratio, 58/42%). The median age of the patients was 40 years (range, 8-64 years) and 6 patients were of the pediatric age group (21%). The most frequent initial clinical symptoms included a mass effect, with signs of increased intracranial pressure (headache, nausea, vomiting, visual disturbance, memory impairment and signs of hypothalamic dysfunction) in 23 patients (79%). Intraventricular hemorrhage from the lesion occurred in 3 cases (10%) and seizures in 2 cases (7%); only one patient was asymptomatic. This higher incidence of mass effect symptoms may be because of the direct compression of the surrounding

Table 1 Summarized surgically resected cavernous hemangioma of the third ventricle

Authors

Publication year Age (year)

Sex Symptom

Vaquero et al. [3] 1980

Pozzati et al. [4] 1980

Lavyne et al. [5] 1983

Amagasa et al. [6] 1984

Harbaugh et al. [7] 1984

Yamasaki et al. [8] 1986

Vocietal. [9] 1989

Ogawa et al. [10] 1990

Katayama et al. [11] 1994

Sinson et al. [12]

Reyns et al. [13] Crivell et al. [14]

Wang et al. [15]

1999 2002

18 F Diplopia

31 F Headache, vomiting

48 F Headache, memory impairment 1.5

40 M Homonymous hemianopsia, endocrine function deficit

44 F Headache, vomiting, IVH 2

9 M Headache 2.5

15 F Lower temporal quadrantopsia 1.5

36 M Headache, vomiting, 2.5

mental change

19 F IVH

16 M Headache, nausea 2

40 M Homonymous hemianopsia, 2

endocrine function deficit

9 F Seizure

45 F IVH

49 M Visual field defect, endocrine 2

function deficit

47 F Memory impairment 3

43 F Headache, memory impairment 3

36 F Memory impairment, weight gain 3

52 F Headache, nausea 3.5

32 F Headache, vomiting, diplopia 2

42 M Seizure 2.5

38 M Memory impairment, gait

disturbance, headache, vomiting

62 F Gait disturbance

Milenkovic et al. [16] 2005

Darwish et al. [17] 2005 Longatti et al. [18] 2006

Headache, memory impairment, bizarre behavior

No symptom

Headache, vomiting, neck pain

1.5 1.2

Approach Extent of Outcome Postoperative resection complication

TC GTR Improved

TV GTR Improved

TC + TV + sc PR Not improved HDC, IVH

IH+TLT GTR Improved

TC + TV GTR Improved HDC

- GTR Improved

- PR No symptom

- PR Improved

TC GTR Improved

IH+TLT GTR No symptom

IH+TLT GTR Improved

IH+TLT PR Death

- - Improved

- - Not improved Vegetative state

- - Improved

SC + TVI GTR Improved Transient Dl, Recurrence

IH+TC + IF GTR Death

IH+TC + IF GTR Not improved HDC

TCo GTR Improved

IFT+SCbll GTR Improved

TCo + TVI PR Improved Recurrence

TCo + TVI GTR Improved

TCo + TV GTR Not improved ICH on thalamus,

CNS infection

TC + TV + TF GTR Improved

TC + TV + TF GTR i—rn No symptom HDC

Table 1 Summarized surgically resected cavernous hemangioma of the third ventricle (Continued)

Zakaria et al. [19] 2006 8 M Headache, vomiting, -gait disturbance TC GTR Improved

Kivelev et al. [20] 2010 52 M Headache, vomiting - TC + IF(?) GTR Improved

Present study 2012 64 F Mental change, homonymous 4 hemianopsia TC + IF GTR Improved Transient DI & hypothalamic injury symptoms*

*; totally resolved at 2 months after the operation.

-, not available; DI, Diabetes insipidus; F, Female; GTR, Gross total resection; HDC, Hydrocephalus; ICH, Intracerebral hemorrhage; IF, Interforniceal; IH, Interhemisphric; IFT, Infratentorial; IVH, Intraventricular hemorrhage; M, Male; PR, partial resection; SC, Subchoroidal; SCbll, Supracerebellar; TC, Transcallosal; TCo, Transcortical; TF, Transforaminal; TLT, Translamina terminalis; TV, Transventricular; TVI, transvelum interpositum.

structures, due to CH growth. Katayama et al. [5] stated that intraventricular CHs tend to grow rapidly resulting in giant malformation, because of low mechanical resistance caused by lack of the surrounding brain tissue and repeated hemorrhage in the CH. In the literature, the mean size of the lesions was reported to be 23 mm (range, 12-40 mm). Although intralesional bleeding can frequently occur when CHs grow within the ventricle, bleeding from a CH into the ventricular system is rare as per the previous reports [10].

The radiological findings of the intraventricular CHs do not differ from those of the intraparenchymal type [10]. Generally, on CT scans, the CH is suggested by the presence of a high density area, absence of perilesional edema, and mild or no contrast enhancement because of blood pool effects, calcification, and recent hemorrhage [22]. On MRI images, the CHs usually have mixed signal intensities. High signal intensities correlate with the presence of methemoglobin and low signal intensities correlate with calcifications and fibrosis within the lesion on T1- and T2-weighted images. A peripheral rim of low signal intensity correlates with the paramagnetic effect of hemosiderin [23].

A conservative treatment is appropriate for an asymptomatic CH located in the supratentorial parenchyma. However, CHs located in the third ventricle, surrounded by vital structures, are especially dangerous. It has also been documented that these lesions show a rapid growth [5], resulting in significant morbidity. For these reasons, the third ventricular CH needs to be treated more aggressively. As shown in Table 1, 80% of the patients were asymptomatic or improved from their initial symptoms after the surgical procedure. The most frequent post-operative complication was a hydrocephalus, observed in four patients. Postoperative mortality was 6.9% (2/29). The important point to be noted, as illustrated by our case, is that large-sized lesions frequently involve the hypothalamus [6,10,11]. Therefore, careful dissection of the lesion should be performed to prevent damage to the hypothalamus. To reduce this complication, minimizing the resection of hemosiderin-stained tissue and preservation of associated developmental venous anomalies are the key points, as in surgery for CHs located in the brain stem or cranial nerves [24,25]. Furthermore, during the operation for CHs buried in the parenchyma with a critical neurological function, initial dissection and removal of the lesion should be attempted on the short trajectory after observation of the surface changes caused by the hemorrhage [24,26]. Considering these principles, transcallosal-interforniceal approach can provide a direct, short corridor to the third ventricle with wide exposure of the lesion.

Conclusions

Surgical excision appears to be the treatment of choice for CHs located in the third ventricle, which tend to

grow rapidly and cause a mass effect. Using the short corridor to the third ventricle, obtaining wide exposure of the lesion, and minimizing resection of the surrounding hemosiderin-stained tissue can lead to a favorable surgical outcome, as demonstrated in the previous reports, including this report.

Consent

Written informed consent was obtained from the patient for publication of this Case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Abbreviations

CH: Cavernous hemangioma; CNS: Centralnervous system; CT: Computed tomography; MRI: Magnetic resonance imaging.

Competing interests

The authors declare that they have no competing interests. Authors' contributions

MSH and KSM drafted manuscript. KHL and SKL revised manuscript critically for important intellectually content. KHL and KSM helped acquisition and interpretation of data. KHL and SKL participated in reviewing literature and helped in conception and design of the study. KSM and SJ conceived the study and participated in its design and coordination. All authors read and approved the final manuscript.

Author details

department of Nueurosurgery, Chonnam NationalUniversity Research Institute of MedicalScience, Chonnam NationalUniversity Hwasun Hospital& Medical School, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 519-763, South Korea. 2Department of Pathology, Chonnam National University Research Institute of MedicalSciences, Chonnam National University Hwasun Hospital& Medical School, Hwasun-gun, Jeollanam-do, South Korea. 3Department of Radiology, Chonnam NationalUniversity Research Institute of MedicalSciences, Chonnam NationalUniversity Hwasun Hospital& Medical School, Hwasun-gun, Jeollanam-do, South Korea.

Received: 28 May 2014 Accepted: 20 July 2014 Published: 29 July 2014

References

1. Simard JM, Garcia-Bengochea F, Ballinger WE Jr, Mickle JP, Quisling RG: Cavernous angioma: a review of 126 collected and 12 new clinical cases. Neurosurgery 1986,18(2):162-172.

2. Voigt K, Yasargil MG: Cerebral cavernous haemangiomas or cavernomas. Incidence, pathology, localization, diagnosis, clinical features and treatment. Review of the literature and report of an unusual case. Neurochirurgia 1976, 19(2):59-68.

3. Vaquero J, Carrillo R, Cabezudo J, Leunda G, Villoria F, Bravo G: Cavernous angiomas of the pineal region. Report of two cases. J Neurosurg 1980, 53(6):833—835.

4. Pozzati E, Padovani R, Morrone B, Finizio F, Gaist G: Cerebral cavernous angiomas in children. J Neurosurg 1980, 53(6):826-832.

5. Lavyne MH, Patterson RH Jr: Subchoroidal trans-velum interpositum approach to mid-third ventricular tumors. Neurosurgery 1983, 12(1):86-94.

6. Amagasa M, Ishibashi Y, Kayama T, Suzuki J: A total removal case of cavernous angioma at the lateral wall of the third ventricle with interhemispheric trans-lamina terminalis approach. No Shinkei Geka 1984, 12(4):517—522.

7. Harbaugh RE, Roberts DW, Fratkin JD: Hemangioma calcificans. Case report. J Neurosurg 1984, 60(2):417-419.

8. Yamasaki T, Handa H, Yamashita J, Paine JT, Tashiro Y, Uno A, Ishikawa M, Asato R: Intracranial and orbital cavernous angiomas. A review of 30 cases. J Neurosurg 1986, 64(2):197-208.

9. Voci A, Panzarasa G, Formaggio G, Arrigoni M, Geuna E: Rare localizations of cavernomas. 4 personal cases. Neurochirurgie 1989, 35(2):99—101.

10. Ogawa A, Katakura R, Yoshimoto T: Third ventricle cavernous angioma: report of two eases. Surg Neurol 1990, 34(6):414-420.

11. Katayama Y, Tsubokawa T, Maeda T, Yamamoto T: Surgical management of cavernous malformations of the third ventricle. J Neurosurg 1994, 80(1):64-72.

12. Sinson G, Zager EL, Grossman RI, Gennarelli TA, Flamm ES: Cavernous malformations of the third ventricle. Neurosurgery 1995, 37(1):37—42.

13. Reyns N, Assaker R, Louis E, Lejeune JP: Intraventricular cavernomas: three cases and review of the literature. Neurosurgery 1999, 44(3):648-654. Discussion 654-645.

14. Crivelli G, Dario A, Cerati M, Dorizzi A: Third ventricle cavernoma associated with venous angioma. Case report and review of the literature. J Neurosurg Sci 2002, 46(3-4):127-130.

15. Wang CH, Lin SM, Chen Y, Tseng SH: Multiple deep-seated cavernomas in the third ventricle, hypothalamus and thalamus. Acta Neurochir (Wien) 2003,145(6):505-508. Discussion 508.

16. Milenkovic Z: Postural intermittent headaches as the initial symptom of a cavernoma in the third ventricle. Acta Neurochir (Wien) 2005, 147(1):105-106.

17. Darwish B, Boet R, Finnis N, Smith N: Third ventricular cavernous

haemangioma. J Clin Neurosci 2005, 12(5):601-603.

18. Longatti P, Fiorindi A, Perin A, Baratto V, Martinuzzi A: Cavernoma of the foramen of Monro. Case report and review of the literature. Neurosurg Focus 2006, 21(1):e13.

19. Zakaria MA, Abdullah JM, George JP, Mutum SS, Lee NN: Third ventricular cavernous angioma. Med J Malaysia 2006, 61 (2):229-232.

20. Kivelev J, Laakso A, Niemela M, Hernesniemi J: Advances in the biology of cerebral cavernous malformations. Surg Neurol Int 2010, 1:61.

21. Chadduck WM, Binet EF, Farrell FW Jr, Araoz CA, Reding DL: Intraventricular cavernous hemangioma: report of three cases and review of the literature. Neurosurgery 1985, 16(2):189-197.

22. Ishikawa M, Handa H, Moritake K, Mori K, Nakano Y, Aii H: Computed tomography of cerebral cavernous hemangiomas. J Comput Assist Tomogr 1980, 4(5):587-591.

23. Sigal R, Halimi P, Doyon D, Blas C, Chan KY: Imaging of cavernomas of the brain. Tomodensitometry and magnetic resonance imaging. Neurochirurgie 1989, 35(2):89-94.

24. Mai JC, Ramanathan D, Kim LJ, Sekhar LN: Surgical resection of cavernous malformations of the brainstem: evolution of a minimally invasive technique. World Neurosurg 2013, 79(5-6):691-703.

25. Deshmukh VR, Albuquerque FC, Zabramski JM, Spetzler RF: Surgical management of cavernous malformations involving the cranial nerves. Neurosurgery 2003, 53(2):352-357. Discussion 357.

26. Ziyal IM, Sekhar LN, Salas E, Sen C: Surgical management of cavernous malformations of the brain stem. Br J Neurosurg 1999, 13(4):366-375.

doi:10.1186/1477-7819-12-237

Cite this article as: Han et al.: Cavernous hemangioma of the third ventricle: a case report and review of the literature. World Journal of Surgical Oncology 2014 12:237.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at Tpntral

www.biomedcentral.com/submit >_ciiuai