Research Article

Synthesis and Characterization of Sb$_2$S$_3$ Nanorods via Complex Decomposition Approach

Abdolali Alemi, $^{1}$ Younes Hanifehpour, $^{1,2}$ and Sang Woo Joo$^2$

$^1$ Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664, Iran
$^2$ WCU Nano Research Center, School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea

Correspondence should be addressed to Sang Woo Joo, swjoo@yu.ac.kr

Received 27 May 2011; Accepted 17 July 2011

Academic Editor: Somchai Thongtem

Copyright © 2011 Abdolali Alemi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Based on the complex decomposition approach, a simple hydrothermal method has been developed for the synthesizing of Sb$_2$S$_3$ nanorods with high yield in 24 h at 150$^{\circ}$C. The powder X-ray diffraction pattern shows the Sb$_2$S$_3$ crystals belong to the orthorhombic phase with calculated lattice parameters $a = 1.120$ nm, $b = 1.128$ nm, and $c = 0.383$ nm. The quantification of energy dispersive X-ray spectrometric analysis peaks give an atomic ratio of 2 : 3 for Sb : S. TEM and SEM studies reveal that the appearance of the as-prepared Sb$_2$S$_3$ is rod-like which is composed of nanorods with the typical width of 30–160 nm and length of up to 6 $\mu$m. High-resolution transmission electron microscopic (HRTEM) studies reveal that the Sb$_2$S$_3$ is oriented in the [10-1] growth direction. The band gap calculated from the absorption spectra is found to be 3.29 eV, indicating a considerable blue shift relative to the bulk. The formation mechanism of Sb$_2$S$_3$ nanostructures is proposed.

1. Introduction

Recently, metal chalcogenides have attracted considerable attention due to their proven and potential applications in electronic, optical, and superconductor devices. Among these materials, antimony sulfide (Sb$_2$S$_3$) is a kind of semiconductor with its interesting high photosensitivity and high thermoelectric power. Antimony sulfide is a layer-structured direct bandgap semiconductor with orthorhombic crystal structure [1]. Sb$_2$S$_3$ is considered as a promising material for solar energy due to its band gap which covers the range of the solar spectrum [2]. Sb$_2$S$_3$ has been extensively investigated for its special applications as a target material for microwave devices [3], television cameras and switching devices [4], rechargeable storage cell [5], and various optoelectronic devices [6]. Over the past two decades, many methods have been employed to prepare Sb$_2$S$_3$ including thermal decomposition [7], solvothermal reaction [8–11], microwave irritation [12], hydrothermal reaction [13, 14], and vacuum evaporation [15]. Besides an elemental reaction and vacuum evaporation, Sb$_2$S$_3$ can be prepared by chemical routes. SbCl$_3$ reacts with different sulfide ion sources, such as ammonium sulfide, thiourea, sodium thiosulfate, and thioacetamide as well as with complexing agents in aqueous or nonaqueous solutions [16, 17]. However, most of the as-prepared Sb$_2$S$_3$ materials are amorphous, and they need to be annealed at high temperature in air or in N$_2$ atmosphere in order to crystallize. In addition, crystalline Sb$_2$S$_3$ can be obtained directly via two-heater method [18] and liquid-mediated metathetical reactions [19]. But different method has its disadvantage. For the vacuum evaporation and direct elemental reaction methods, it is difficult to obtain exact stoichiometric compositions because of the differences in the vapor pressures of the reaction species. Consequently, exploring a convenient synthesis method is significant [20]. Recently, we have reported a new method via redox mechanism by using starting materials in elemental form [14]. Several morphologies of Sb$_2$S$_3$ have been reported, for example, microspheres, microtubes [21], dendrite or feather [22], dumbbell-like [23], and also peanut-shaped superstructures [24]. In this study, Sb$_2$S$_3$ nanorods were prepared by complex decomposition approach via hydrothermal method.
2. Experimental

2.1. Synthesis of Sb$_2$S$_3$ Nanorods. All the reagents were of analytical grade and were used without further purification. In a typical procedure, 0.4 g CS$_2$, 0.6 g EDTA, and 1 g NaOH were added to 50 mL distilled water and stirred well for 20 min at room temperature. Then, 1 mmol of SbCl$_3$ was added to above mixture and the mixture was transferred into a 100 mL Teflon-lined autoclave. The autoclave was sealed, maintained at 150°C for 24 h, and cooled at room temperature, naturally. The black precipitate was filtered and washed with dilute chloride acid and water. Then, it was dried at room temperature. Yields for the products were 96%. Finally, the obtained sample was dried at room temperature and used for characterization. The best conditions for this reaction are pH = 10, temperature 150°C, and time of reaction 24 h. Under other conditions, some impurity is seen in XRD patterns and EDS related to unreacted raw elements or formation of antimony oxides. The crystal structure of the product was characterized by X-ray diffraction (XRD D500 Simens) with CuKα radiation ($\lambda = 1.5418\text{Å}$). The morphology of materials was examined by a scanning electron microscope SEM (Hitachi S-4200). The HRTEM image and SAED pattern were recorded by a Cs-corrected high-resolution TEM (JEM-2200FS,JEOL) operated at 200 kV. The TEM sample was prepared by using an FIB (Helios Nanolab, FEI). Elemental analysis was carried out using a linked ISIS-300, Oxford EDS (energy dispersion...
Figure 5: (a) TEM image of the Sb₂S₃ nanorods synthesized at 150°C and 24 h (b) HRTEM image and FFT (c) SAED of the Sb₂S₃ nanorods. The SAED zone axis is [111].

Figure 6: (a) Excitation spectra and (b) emission spectra of Sb₂S₃ nanorods.

Figure 7: UV/Vis spectra of Sb₂S₃ nanorods.

3. Results and Discussion

A typical XRD of the as-prepared Sb₂S₃ is shown in Figure 1. All the peaks in the pattern can be indexed to an orthorhombic phase with lattice parameters \( a = 1.122 \, \text{nm} \), \( b = 1.128 \, \text{nm} \), and \( c = 0.384 \, \text{nm} \). The intensity and positions of the peaks are in good agreement with the values reported in the literature (JCPDS card File: 42-1393). No characteristic peaks are observed for other impurities such as antimony oxides, or SbOCl.

Figure 2 shows a typical EDXA spectrum recorded on single crystals, whose peaks are assigned to Sb and S. The EDX analysis of the product confirms the ratio of Sb/S to be 2:3, as expected. According to EDX analysis, no impurity such as elemental antimony, antimony oxides or SbOCl is observed.

The crystal size (CS) is calculated from X-ray diffraction patterns using Scherrer’s formula \( \text{CS} = K \lambda / \beta \cos \theta \), where \( \beta \) is the full width at the half maximum of peak corrected for instrumental broadening, \( \lambda \) is the wavelength of the X-ray and \( K \) is Scherrer’s constant) [25]. The grain size was...
The morphology of the prepared Sb\textsubscript{2}S\textsubscript{3} was examined by scanning electron microscopy. SEM images with different magnification shows that the length of Sb\textsubscript{2}S\textsubscript{3} nanorods is up to 6 μm and 30–160 nm as diameter (Figures 3(a) and 3(b)).

Also, Figure 4 shows atomic force microscopic image of as-prepared Sb\textsubscript{2}S\textsubscript{3} with rode like structure and phase homogeneity.

Figure 5(a) shows TEM image of as-prepared Sb\textsubscript{2}S\textsubscript{3} nanorods. Also, the typical HRTEM image recorded from the same nanorods is shown in Figure 5(b). The crystal lattice fringes are clearly observed and average distance between the neighboring fringes is 0.79 nm, corresponding to the [1 1 0] plane lattice distance of orthorhombic-structured Sb\textsubscript{2}S\textsubscript{3}, which suggests that Sb\textsubscript{2}S\textsubscript{3} nanorods grow along the [1 0 −1] direction. The SAED pattern of the nanorods indicates that its single-crystal nature and long axis is [1 0 −1] (Figure 5(c)).

To explain the synthesis process, possible chemical reaction involved in the synthesis of Sb\textsubscript{2}S\textsubscript{3} could be listed in Scheme 1.

First, EDTA was reacted with CS\textsubscript{2} in water for 12 h to give a clear solution, which was precipitated in ethanol. The product was recrystallized in methanol: chlorophorm (1 : 1) mixture and characterized by FTIR spectroscopy. This is a thiocarbonate ester of EDTA, which seems to act as a ligand to form an intermediate complex of Sb\textsuperscript{3+}, as confirmed by similar FTIR spectroscopy. Such an intermediate complex is isolated by heating of a reaction mixture of CS\textsubscript{2}, EDTA, NaOH, and SbCl\textsubscript{3} in water under hydrothermal condition for 1 h. The resultant mixture was filtered and the obtained precipitate was identified by FTIR spectroscopy.

Comparison of the FTIR spectra shows that the same bands indicate some shift due to the complexation of the ligand. The line positions (in cm\textsuperscript{−1}) of \(\nu = 691\) C–S stretching, \(\nu = 1174\) esteric band, \(\nu = 1250\) C–N stretching (tertiary amine) in case of ligand shifts to \(\nu = 888\) C–S stretching, \(\nu = 1119\) esteric band, \(\nu = 1283\) C–N stretching (tertiary amine) due to complexation. After 24 h exposing to heat and pressure, the resultant Sb\textsuperscript{3+} complex will be degraded completely to form the Sb\textsubscript{2}S\textsubscript{3} compound.
EDX result (see Figure 2) shows that no organic compound remains in the sample. In semiconductors, band gaps have been found to be particle-size dependent and increase with decreasing of particle size [26]. As Sb$_2$S$_3$ is a narrow band gap semiconductor (Eg is 1.7 ev for bulk), with decreasing in diameter into nanoscale, novel optical properties may be observed. The photoluminescence (PL) spectrum of synthesized antimony sulfide, shown in Figure 6, has an excitation peak at 390 nm (Figure 6(a)), and the emission peak can be observed at 415, 442 and 475 nm (Figure 6(b)). The absorption spectra of Sb$_2$S$_3$ (prepared by dispersion of Sb$_2$S$_3$ nanorods in ethanol) show an intense absorption band at 315 nm with band gap around 3.29 ev (Figure 7). A blue shift phenomena is seen for Sb$_2$S$_3$ nanorods.

Most of the materials have different structural defects that create defect energy levels between band gaps of material. These defects result in difference of the UV absorption and PL excitation spectra.

4. Conclusion

In summary, a complex decomposition approach in hydrothermal condition has been developed to prepare Sb$_2$S$_3$ nanorods with high yield. The length of the nanorods is up to 6 $\mu$m and their diameter is around 30–160 nm. Single crystals could be obtained by increasing of heating time up to 48 h. High-resolution transmission electron microscopic (HRTEM) studies reveal that the Sb$_2$S$_3$ is oriented in the [10-1] growth direction. A blue shift was observed in the case of optical absorption and PL, common feature for nanomaterials.

Acknowledgments

This work is funded by the World Class University Grant KRF R32-2008-000-20082-0 of the National Research Foundation of Republic of Korea. Y. Hanifehpour thanks the Council of the University of Tabriz for their invaluable guidance.

References


