Scholarly article on topic 'Some fixed point theorems for ( α , θ , k ) $(\alpha,\theta,k)$ -contractive multi-valued mappings with some applications'

Some fixed point theorems for ( α , θ , k ) $(\alpha,\theta,k)$ -contractive multi-valued mappings with some applications Academic research paper on "Mathematics"

0
0
Share paper
Academic journal
Fixed Point Theory Appl
OECD Field of science
Keywords
{""}

Academic research paper on topic "Some fixed point theorems for ( α , θ , k ) $(\alpha,\theta,k)$ -contractive multi-valued mappings with some applications"

Pansuwan et al. Fixed Point Theory and Applications (2015) 2015:132 DOI 10.1186/s13663-015-0385-3

0 Fixed Point Theory and Applications

a SpringerOpen Journal

RESEARCH Open Access

^ CrossMark

Some fixed point theorems for

(a,6,//)-contractive multi-valued mappings

with some applications

Adoon Pansuwan1, Wutiphol Sintunavarat1, Vahid Parvaneh2* and Yeol Je Cho3,4*

"Correspondence: zam.dalahoo@gmail.com; yjcho@gnu.ac.kr

2Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran

3Department of Mathematics Education and the RINS, Gyeongsang NationalUniversity, Chinju, 660-701, Korea Fulllist of author information is available at the end of the article

Abstract

In this paper, we introduce the notion of (a,6, ^-contraction multi-valued mappings and establish some fixed point results for such mappings by using some control functions due to Jleli etal. (J. Inequal. Appl. 2014:439,2014) in metric spaces and furnish some interesting examples to illustrate our main results. Also, we give some fixed point results in metric spaces endowed with a graph. Our results generalize and extend recent results given by some authors.

MSC: 47H09;47H10

Keywords: a-admissible multi-valued mapping; a-complete metric spaces; a-continuous function

ft Spri

1 Introduction and preliminaries

Now, we recall some notations and primary results which are needed in the sequel.

Let (X, d) be a metric space. We denote by N(X) the class of all nonempty subsets of X, by CL(X) the class of all nonempty closed subsets of X, by CB(X) the class of all nonempty closed bounded subsets of X and by K(X) the class of all nonempty compact subsets of X. For any A, B e CL(X), let the mapping H: CL(X) x CL(X) ^ R+ U {cx)} defined by

H (A, B) =

max{supaeA d(a, B), supbeB d(b, A)}, if the maximum exists; x, otherwise,

ringer

be the generalized Pompeiu-Hausdorff metric induced by d, where d(a, B) = inf{d(a, b): b e B} is the distance from a to B c X.

In 1969, Nadler [1] extended Banach's contraction principle to the class of multi-valued mappings in metric spaces as follows.

Theorem 1.1 [1] Let (X, d) be a complete metric space and T : X ^ CB(X) be a multivalued mapping such that

H(Tx, Ty) < kd(x,y) (1.1)

for all x, y e X, where k e [0,1). Then T has at least one fixed point.

© 2015 Pansuwan et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 InternationalLicense (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution, and reproduction in any medium, provided you give appropriate credit to the originalauthor(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Since Nadler's fixed point theorem, a number of authors have published many interesting fixed point theorems in several ways (see [2-4] and references therein). In 2012, Samet etal. [5] introduced the concept of a-admissible mapping as follows.

Definition 1.2 [5] Let T be a self-mapping on a nonempty set X and a : X x X ^ [0, to) be a mapping. The mapping T is said to be a-admissible if the following condition holds:

x,y e X, a(x,y) > 1 a(Tx, Ty) > 1.

They also proved some fixed point theorems for such mappings under the generalized contractive conditions in complete metric spaces and showed that these results can be utilized to derive some fixed point theorems in partially ordered metric spaces.

Afterward, Asl et al. [6] introduced the concept of an a*-admissible mapping which is the multi-valued version of a-admissible single-valued mapping provided in [5].

Definition 1.3 [6] Let X be a nonempty set, T : X ^ N(X) and a : X x X ^ [0, to) be two given mappings. The mapping T is said to be a*-admissible if the following condition holds:

x,y e X, a(x,y) > 1 a*(Tx, Ty) > 1,

where a*(Tx, Ty) := inf{a(a, b): a e Tx, b e Ty}.

Asl et al. [6] also established a fixed point result for multi-valued mappings in complete metric spaces satisfying some generalized contractive condition.

In 2013, Mohammadi etal. [7] extended the concept of an a*-admissible mapping to the class of a-admissible mappings as follows.

Definition 1.4 [7] Let X be a nonempty set, T: X ^ N(X) and a : X x X ^ [0, to) be two given mappings. The mapping T is said to be a-admissible whenever, for each x e X and y e Tx with a(x,y) > 1, we have a(y,z) > 1 for all z e Ty.

Remark 1.5 It is clear that an a*-admissible mapping is also a-admissible, but the converse may not be true.

Recently, Hussain et al. [8] introduced the concept of the a-completeness of metric spaces which is a weaker than the concept of the completeness.

Definition 1.6 [8] Let (X, d) be a metric space and a : X x X ^ [0, to) be a mapping. The metric space X is said to be a-complete if every Cauchy sequence {xn} in X with a(xn,xn+i) > 1 for all n e N converges in X.

Remark 1.7 If X is a complete metric space, then X is also an a-complete metric space, but the converse is not true.

Example 1.8 Let X = (0, to) and the metric d: X x X ^ R defined by d(x,y) = |x - y| for all x, y e X. Define a mapping a : X x X ^ [0, TO)by

a(x, y)

ex+y, if x,y e [2,5], otherwise.

It is easy to see that (X, d) is not a complete metric space, but (X, d) is an a-complete metric space. Indeed, if {xn} is a Cauchy sequence in X such that a(xn,xn+i) > 1 for all n e N, then xn e [2,5] for all n e N. Since [2,5] is a closed subset of R, it follows that ([2,5], d) is a complete metric space and so there exists x* e [2,5] such that xn — x* as n -TO.

Recently, Kutbi and Sintunavarat [9] introduced the concept of the a-continuity for multi-valued mappings in metric spaces as follows.

Definition 1.9 [9] Let (X, d) be a metric space, a : X x X — [0, to) and T: X — CL(X) be two given mappings. The mapping T: X — CL(X) is called an a-continuous multi-valued mapping if, for all sequence {xn} with xn -— x e X as n — to and a(xn, xn+1) > 1 for all n e N,we have Txn Tx as n - to, that is, for all n e N,

lim d(xn, x) = 0, a(xn, xn+1) > 1

lim H(Txn, Tx) = 0.

Note that the continuity of T implies the a-continuity of T for all mappings a. In general, the converse is not true (see Example 1.10).

Example 1.10 [9] Let X = [0, to), X e [10,20] and the metric d: X x X — R defined by d(x, y) = |x -y| for all x, y e X. Define two mappings T: X — CL(X) and a : X x X — [0, to) by

{Xx2}, ifx e [0,1], {x}, if x >1

a(x, y) =

cosh(x2 + y2), if x,y e [0,1], tanh(x + y), otherwise.

Clearly, T is not a continue multi-valued mapping on (CL(X), H). Indeed, for a sequence {xn} in X defined by xn = 1 + n for each n > 1, we see that xn = 1+ n — 1, but Txn = {1 + n} — {1}= {X} = T1.

Next, we show that T is an a-continue multi-valued mapping on (CL(X),H). Let {xn} be a sequence in X such that xn -— x e X as n — to and a(xn, xn+i) > 1 for all n e N. Then we have x,xn e [0,1] for all n e N. Therefore, Txn = {Xxn} -— {Xx2} = Tx. This shows that T is an a-continue multi-valued mapping on (CL(X),H).

In this paper, we introduce new type of multi-valued mappings so called (a, Q, k)-contraction multi-valued mappings and prove some new fixed point results for such mappings in a-complete metric spaces by using the idea of a-admissible multi-valued mapping due to Mohammadi et al. [7] and furnish some interesting examples to illustrate the main results in this paper. Also, we obtain some fixed point results in metric spaces endowed with graph.

2 The main results

Recently, Jleli et al. [10] introduced the class © of all functions 6 : (0, x) ^ (1, x) satisfying the following conditions:

(61) 6 is non-decreasing;

(62) for each sequence {tn} c (0, x), limn^x 6(tn) = 1 if and only if limn^x tn = 0;

(63) there exist r e (0,1) and I e (0, x] such that lim^0+ ^^ = ^

(64) 6 is continuous;

and proved the following result.

Theorem 2.1 (Corollary 2.1 of [10]) Let (X, d) be a complete metric space and T: X ^ X be a given mapping. Suppose that there exist 6 e © and k e (0,1) such that

x,y e X, d(Tx, Ty) =0 6 (d(Tx, Ty)) < 6 (d(x,y))k. (2.1)

Then T has a unique fixed point.

Observe that Banach's contraction principle follows immediately from the above theorem (see [10]).

In this section, we introduce the concept of (a, 6, k)-contraction multi-valued mappings and prove fixed point results for such mappings without the assumption of the completeness of domain of mappings and the continuity of mappings.

Definition 2.2 Let (X, d) be a metric space. A multi-valued mapping T: X ^ K(X) is said to be an (a, 6, k)-contraction if there exist a : X x X ^ [0, x), 6 e ©, and k e (0,1) such that

x,y e X, H(Tx, Ty) = 0 a(x,y)6 (H(Tx, Ty)) < 6 (M(x,y))k, (2.2)

{d(x, Ty) +

d(x,y), d(x, Tx), d(y, Ty), —--—

Now, we give the first main result in this paper.

Theorem 2.3 Let (X, d) be a metric space and T : X ^ K(X) be an (a, 6, k)-contraction mapping. Suppose that the following conditions hold:

(51) (X, d) is an a-complete metric space;

(52) T is an a-admissible multi-valued mapping;

(53) there exist x0 andx1 e Tx0 such that a(x0,x1) > 1;

(54) T is an a-continuous multi-valued mapping.

Then T has a fixed point in X.

Proof Starting from x0 and x1 e Tx0 in (S3), then we have a(x0,x1) > 1. If x0 = x1, then x0 is a fixed point of T. Assume that x0= x1. If x1 e Tx1, then x1 is a fixed point of T and so we

have nothing to prove. Let xi é Txi, that is, d(xi, Txi) > 0. Since H(Txo, Txi) > d(xi, Txi) > 0, it follows from the (a, Q, k)-contractive condition that

q (H(Txo, Txi))

< a(x0,xi)Q(H(Tx0, Tx1))

< Q (max{d(xo,xi), d(xo, Txo), d(xi, Txi), d(xo, Txi) + d(xi,Txo) '

= Q^max jd(xo,xi), d(xi, Txi), d(xo^Txi) | ^J {,, , ,, „ , d(xo,xi)+d(xi, Txi) 1

< ^d(xo,Xl), d(xl, ^---J

= Q (max{ d(xo, xi), d(xi, Txi)} )k. (.3)

If max{d(xo,xi), d(xi, Txi)} = d(xi, Txi), then we have

i < Q (d(xi, Txi))

< Q(H(Txo, Txi))

< Q(ma^d(xo,xi),d(xi, Txi)})k

= Q (d(xi, Tx i))k, (2.4)

which is a contradiction. Therefore, max{d(xo,xi), d(xi, Txi)} = d(xo,xi). From (2.3), it follows that

i < Q(d(xi, Txi)) < Q(H(Txo, Txi)) < Q(d(xo,xi))k. (2.5)

Since Txi is compact, there exists x2 é Txi such that

d(xi, x2) = d(xi, Txi). (2.6)

From (2.5) and (2.6), it follows that

i <Q(d(xi,x2)) <Q(d(xo,xi))k. (2.7)

If xi = x2 or x2 é Tx2, then it follows that x2 is a fixed point of T and so we have nothing to prove. Therefore, we may assume that xi = x2 and x2 é Tx2. Since xi é Txo, x2 é Txi, a(xo,xi) > i and T is an a-admissible multi-valued mapping, we have a(xi,x2) > i. Applying the (a, Q, k)-contractive condition, we have

Q (H(Txi, Tx2))

< a(xi,x2)Q(H(Txi, Tx2))

/ i . . „ . d(xi, Tx2) + d(x2, Txi) ]

< Ql ma^j d(xi,x2), d(xi, Txi), d(x2, Tx2),---?

= 0^maxjd(x\,x2), d(x2,2X2),

(,, , ,, „ , d(xi,x2) + d(x2,2X2) 1 < 01 ma^j d(x1,x2), d(x2, Tx2),---?

= 0 (ma^ d(x1, x2), d(x2, Tx2)} )k. (.8)

Suppose that max{d(x1,x2), d(x2, Tx2)} = d(x2, Tx2). From (2.8), it follows that

1 < 0 (d(x2, Tx2))

< 0 (H(Txi, Tx2))

< 0 (ma^d(x1,x2), d(x2, Tx2)})k (2.9) = 0 (d(x2, Tx2^ k,

which is a contradiction. Therefore, we may let max{d(x1,x2), d(x2, Tx2)} = d(x1,x2). From (2.8), it follows that

1 < 0(d(x2, Tx2)) < 0(H(Tx1, Tx2)) < 0(d(xltx2))k. (2.10)

Since Tx2 is compact, there exists x3 e Tx2 such that

d(x2, x3) = d(x2, Tx2). (2.11)

From (2.10) and (2.11), it follows that

1 <0(d(x2,x3)) < 0(d(x1,x2))k < 0(d(xo,x1))k2. (2.12)

Continuing this process, we can construct a sequence {xn} in X such that

xn = xn+1 e Txn, (2.13)

a(xn, xn+1) > 1 (2.14)

1 < 0(d(xn+1,xn+2)) < 0(d(x0,x^)k (2.15)

for all n e N U {0}. This shows that limn^œ 0(d(xn,xn+1)) = 1 and so

lim d(xn, xn+1) = 0 (2.16)

by our assumptions about 0. From similar arguments as in the proof of Theorem 2.1 of [10], it follows that there exist n1 e N and r e (0,1) such that

d(xn, xn+1) < f

for all n > n1. Now, for m > n > n1 we have

m-1 m-i i

d(xn, xm) — ^ d(xi, Xi+i) ' ^ -

• ■ i1

i=n i=n ^

Since 0 < r <1, ;=n t: converges. Therefore, d(xn,xm) — 0 as m, n — to. Thus we proved

that {xn} is a Cauchy sequence in X. From (2.14) and the a-completeness of (X, d), there exists x* e X such that xn—x* as n — to. By the a-continuity of multi-valued mapping T, we have

lim H(Txn, Tx*) = 0, (2.17)

«—TO v 7

which implies that

d(x*, Tx**) = lim d(xn+1, Tx*) — lim HÍTx«, Tx*) = 0.

v / «—TO ' «—TO '

Therefore, x* e Tx* and hence T has a fixed point. This completes the proof. □

Next, we give the second main result in this paper.

Theorem 2.4 Let (X, d) be a metric space and T : X — K(X) be an (a, Q, k)-contraction mapping. Suppose that the following conditions hold:

(51) (X, d) is an a-complete metric space;

(52) T is an a-admissible multi-valued mapping;

(53) there exist x0 andx1 e Tx0 such that a(x0,x1) > 1;

(54) if {xn} is a sequence in X with x«—x e X as n —to and a(xn,x«+1) > 1 for all n e N, then we have

Q (H(Tx«, Tx)) — Q (M(x«,x))k, (.18)

Íd(x«, Tx) + d(x, Tx«) d(xn,x), d(xn, Tx«), d(x, Tx), ——--—«

for all n e N. Then T has a fixed point in X.

Proof Following the proof of Theorem 2.3, we know that {xn} is a Cauchy sequence in X such that xn— x* as n —to and

a(xn, xn+i) > 1 (.19)

for all n e N. Suppose that d(x*, Tx*) > 0. By using (2.18), we have

Q{d{x«+1, Tx*)) — Q(H(Tx«, Tx*))

(f d(%n, Tx*) + d(x*, Tx—) ma^j d{xn, x*), d(xn, Txn), d(x*, Tx*), ——----——

< ^ma^d(xn,x*), d(xn,xn+i), d(x*, Tx*), d(xn Tx ) + d(x ,x—+0 (2.20)

for all n e N. Letting n ^x in (2.20), we have

6(d(x*, Tx*)) < 6(d(x*, Tx*))k.

This implies that 6(d(x*, Tx*)) = 0, which is a contradiction. Therefore, we have d(x*, Tx*) = 0, that is, x* e Tx*. This completes the proof. □

Remark 2.5 From Remark 1.5, the conclusion in Theorems 2.3 and 2.4 are still hold if we replace condition (S2) by the following condition:

(S2) T is an a*-admissible multi-valued mapping.

Now, we give an example to illustrate Theorem 2.4.

Example 2.6 Let X = (-10,10) and the metric d : X x X ^ R defined by d(x,y) = |x - y\ for all x, y e X. Define T : X ^ K(X) and a : X x X ^ [0, x) by

[— | x |, |x|], if x e (-10,0), [0,4 ], if x e [0,2], [ 2+1°, 6], if x e (2,10)

a(x, y) =

1, if x, y e [0,2], 0, otherwise.

Clearly, (X, d) is not a complete metric space. Many fixed point results are not applicable here.

Next, we show that Theorem 2.4 can be guarantee the existence of fixed point of T. Define a function 0 : (0, x) ^ (1, x) by

0 (t) = ^Vte

for all t e (0, x). It is easy to see that 0 e © (see also [10]).

Firstly, we show that T is an (a, 0, //)-contraction multi-valued mappings with k =2. For all x,y e [0,2] with H(Tx, Ty) = 0, we have x = y and then

a(x,y)0(H(Tx, Ty)) = 0' X -yl

= e\ ^ e

.J |x—y|e|x—У|

= e 2 V d(x,y)ed(xy < e 2 VM(x,y)eM(x,y

= e (M(x, y))k,

that is, the condition (2.2) holds. Therefore, T is an (a, e, k)-contraction multi-valued mappings with k = 2. Moreover, it is easy tosee that T is an a-admissible multi-valued mapping and there exists x0 = 1 e X and x1 = 1/4 e Tx0 such that

a(x0,x1) = a(1,1/4) > 1.

Finally, for each sequence {xn} in X with xn — x e X as n — to and a(xn, xn+1) > 1 for all n e N,we have x, xn e [0,2] for all n e N. Then we obtain

e(H(Txn, Tx)) = e( x -x|

lxn -x

< e 2 V|x„-x|e|x«-x|

= e 2 V d(xn,x)ed(xn,x) < e2VM(x„,x)eM(xn,x)

= e(M(xn, x))k

for all n e N. Thus the condition (S4) in Theorem 2.4 holds. Therefore, by using Theorem 2.4, it follows that T has a fixed point in X. In this case, T has infinitely fixed points such as -8, -2, and 0.

3 Some applications

In 2008, Jachymski [11] obtained a generalization of Banach's contraction principle for mappings on a metric space endowed with a graph. Afterward, Dinevari and Frigon [12] extended the results of Jachymski [11] to multi-valued mappings.

In this section, we give the existence of fixed point theorems on a metric space endowed with graph. The following notions and definitions are needed.

Let (X, d) be a metric space. A set {(x,x): x e X} is called a diagonal of the Cartesian product X x X, which is denoted by A. Consider a graph G such that the set V(G) of its vertices coincides with X and the set E(G) of its edges contains all loops, i.e., A c E(G). We assume that G has no parallel edges and so we can identify G with the pair (V(G),E(G)). Moreover, we may treat G as a weighted graph by assigning to each edge the distance between its vertices.

Definition 3.1 [9] Let X be a nonempty set endowed with a graph G and T: X — N(X) be a multi-valued mapping, where X is a nonempty set. The mapping T preserves edges weakly if, for each x e X and y e Tx with (x,y) e E(G), we have (y, z) e E(G) for all z e Ty.

Definition 3.2 [9] Let (X, d) be a metric space endowed with a graph G. The metric space X is said to be E(G)-complete if every Cauchy sequence {xn} in X with (xn, xn+1) e E(G) for all n e N converges in X.

Definition 3.3 [9] Let (X, d) be a metric space endowed with a graph G. A mapping T: X ^ CL(X) is called an E(G)-continuous mapping to (CL(X), H) if, for any x e X and any sequence {xn} with limn^x d(xn,x) = 0 and (xn,xn+1) e E(G) for all n e N,we have

lim H(Txn, Tx) = 0.

Definition 3.4 Let (X, d) be a metric space endowed with a graph G. A mapping T: X ^ K(X) is called an (E(G), 0, k)-contraction multi-valued mapping if there exist a function 0 e © and k e (0,1) such that

x,y e X, (x,y) e E(G), H(Tx, Ty) =0 0(H(Tx, Ty)) < 0((M(x,y)))k, (3.1)

d(x, Ty) + d(y, Tx)

M(x,y) = max! d(x,y), d(x, Tx), d(y, Ty), ■

Theorem 3.5 Let (X, d) be a metric space endowed with a graph G and T : X ^ K(X) be a (E(G), 0, k)-contraction multi-valued mapping. Suppose that the following conditions hold:

(51) (X, d) is an E(G)-complete metric space;

(52) T preserves edges weakly;

(53) there exist x0 andx1 e Tx0 such that (x0,x1) e E(G);

(54) T is an E(G)-continuous multi-valued mapping.

Then T has a fixed point in X.

Proof This result can be obtained from Theorem 2.3 if we define a mapping a : X x X ^ [0, x) by

a(x, y) =

1, if(x, y) e E(G), 0, otherwise.

This completes the proof. □

By using Theorem 2.4, we get the following result.

Theorem 3.6 Let (X, d) be a metric space endowed with a graph G and T : X ^ K(X) be a (E(G), 0, k)-contraction multi-valued mapping. Suppose that the following conditions hold:

(51) (X, d) is an E(G)-complete metric space;

(52) T preserves edges weakly;

(53) there exist x0 andx1 e Tx0 such that (x0,x1) e E(G);

(54) if {xn} is a sequence in X with xn ^ x e X as n ^x and (xn, xn+1) e E(G) for all n e N, then we have

0 (H(Txn, Tx)) < 0 (M(xn,x))k,

M(xn,x) = max] d(xn,x),d(xn, Txn),d(x, Tx),

d(xn, Tx) + d(x, Txn ) 2

/or a// n e N. Then T has a fixed point in X.

Competing interests

The authors declare that they have no competing interests. Authors' contributions

All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript. Author details

1 Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Rangsit Center, Pathumthani, 12121, Thailand. 2Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University, Gilan-E-Gharb, Iran. 3Department of Mathematics Education and the RINS, Gyeongsang National University, Chinju, 660-701, Korea. 4Department of Mathematics, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.

Acknowledgements

The first and second authors gratefully acknowledge the financial support provided by Thammasat University under the TU Research Scholar, Contract No. 1/7/2557. Yeol Je Cho was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2014R1A2A2A01002100).

Received: 8 April 2015 Accepted: 16 July 2015 Published online: 30 July 2015 References

1. Nadler, SB Jr.: Multi-valued contraction mappings. Pac. J. Math. 30,475-488 (1969)

2. Pathak, HK, Agarwal, RP, Cho, YJ: Coincidence and fixed points for multi-valued mappings and its application to nonconvex integral inclusions. J. Comput. Appl. Math. 283,201-217 (2015)

3. Kutbi, MA, Sintunavarat, W: Fixed point theorems for generalized wa-contraction multivalued mappings in a-complete metric spaces. Fixed Point Theory Appl. 2014,139 (2014)

4. Kutbi, MA, Sintunavarat, W: Fixed point analysis for multi-valued operators with graph approach by the generalized Hausdorff distance. Fixed Point Theory Appl. 2014,142 (2014)

5. Samet, B, Vetro, C, Vetro, P: Fixed-point theorems for a-ty-contractive type mappings. Nonlinear Anal. 75,2154-2165

(2012)

6. Asl, JH, Rezapour, S, Shahzad, N: On fixed points of a-ty-contractive multifunction. Fixed Point Theory Appl. 2012,

7. Mohammadi, B, Rezapour, S, Shahzad, N: Some results on fixed points of a-ty-CiriC generalized multifunctions. Fixed Point Theory Appl. 2013,24 (2013)

8. Hussain, N, Kutbi, MA, Salimi, P: Fixed point theory in a-complete metric spaces with applications. Abstr. Appl. Anal. 2014, Article ID 280817 (2014)

9. Kutbi, MA, Sintunavarat, W: On new fixed point results for (a, ty)-contractive multi-valued mappings on complete metric spaces and their consequences. Fixed Point Theory Appl. 2015,2 (2015)

10. Jleli, M, Karapinar, E, Samet, B: Further generalizations of the Banach contraction principle. J. Inequal. Appl. 2014,439 (2014)

11. Jachymski, J: The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 136, 1359-1373 (2008)

12. Dinevari,T, Frigon, M: Fixed point results for multivalued contractions on a metric space with a graph. J. Math. Anal. Appl. 405,507-517(2013)

212(2012)